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1. Introduction

The key ingredient to risk-based portfolio optimization is the variance-covariance (VCV)

matrix of asset returns. The natural candidate to use is the sample covariance matrix;

however, this estimator is prone to error and not suitable when the number of assets under

consideration is large (Clarke, De Silva and Thorley, 2006; Lee, 2011; Ardia, Bolliger, Boudt

and Gagnon-Fleury, 2017; Jurczenko and Teiletche, 2018). A rich literature proposes a myriad

of alternative VCV estimators to address these limitations. These estimators are typically

evaluated empirically using the ex-post volatility and Sharpe ratio of Markowitz’s (1952)

global minimum variance (GMV) portfolio.1 With the exception of a long-only constraint,

studies proposing new VCV estimators rarely impose additional constraints on the GMV test

portfolio, making the resulting portfolios unrealistic to implement in practice due to high

leverage, concentration, turnover, and transaction costs. We explore recent enhancements in

VCV matrix estimation in equity universes from a practitioner’s perspective across a range

of risk-based portfolios, including constrained GMV and risk-parity portfolios. We challenge

the use of the unconstrained GMV portfolio and ex-post volatility as the standard evaluation

criteria for the practical relevance of alternative VCV estimators. Instead, we propose the

use of a more realistic weight-constrained long-only GMV portfolio with transaction cost

penalties and to consult its after-cost performance measures.

Using constituents of the S&P 500 index from January 1990 to December 2021, we first

evaluate whether the choice of optimal VCV matrix estimator differs across various risk-based

portfolios, where optimality is determined by the ex-post portfolio volatility. We then explore

the pratical relevance of the risk-based portfolios by investigating characteristics beyond

ex-post volatility. We evaluate the risk-adjusted returns, asset weights, turnover, transaction

costs, factor exposures, and portfolio similarity, characteristics that have frequently been

ignored in the portfolio management literature (Lesmond, Schill and Zhou, 2004; Frazzini,

Israel and Moskowitz, 2012; Novy-Marx and Velikov, 2016).

To assess the practical relevance of VCV estimators, we explore GMV and risk-parity

1Some recent examples are Engle, Ledoit and Wolf (2019), Trućıos, Zevallos, Hotta and Santos (2019), Conlon,
Cotter and Kynigakis (2021), De Nard, Ledoit and Wolf (2021), and De Nard, Engle, Ledoit and Wolf
(2022).
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portfolios. Risk parity portfolios are effectively looking to also minimize portfolio variance but

subject to a diversification constraint, hence, they naturally extend the set of test portfolios.

As for GMV, consider the traditional unconstrained GMV portfolio, the long-only GMV

portfolio, and we introduce a long-only GMV portfolio with a maximum-weight constraint and

a transaction cost penalty to ensure a less concentrated portfolio after transaction costs. As

for risk parity, we evaluate two risk-parity allocations that aim to maximize risk diversification:

the equal risk contribution (ERC) portfolio of Maillard, Roncalli and Tëıletche (2010) and the

hierarchical risk-parity (HRP) portfolio of López de Prado (2016). ERC aims to ensure equal

risk contribution from each asset in the portfolio, while HRP assumes a hierarchical structure

between assets. HRP exploits this hierarchical structure by using hierarchical clustering to

filter out the most important asset links and uses the found clusters to allocate to assets with

an inverse variance scheme.

The literature on VCV estimators has advanced various streams of VCV improvements.

To capture a wide range of both traditional and state-of-the-art VCV estimators, we focus

on three key design choices: (i) shrinkage, (ii) time-dynamics, and (iii) factor structure.

Combining these choices results in estimators with varying degrees of complexity. First, we

use shrinkage methods to reduce the instability and prevent singularity of the VCV matrix

estimators. We investigate the linear (LS) and non-linear (NLS) shrinkage estimators of

Ledoit and Wolf (2004b, 2022a). We find that for the unconstrained GMV portfolio, linear

shrinkage is effective in reducing ex-post portfolio volatility relative to the sample VCV

estimator. In line with prior literature (Ledoit and Wolf, 2012, 2017), we document that non-

linear shrinkage significantly outperforms linear shrinkage. However, the shrinkage benefits

from linear and non-linear shrinkage diminish significantly when moving from unconstrained

GMV portfolios to long-only risk-based portfolios, resonating with the shrinkage implicit in

long-only constraints (Jagannathan and Ma, 2003).

The second design choice is to move from static to dynamic estimators to account for

dynamic time-series dependence in asset returns. We focus on the DCC model of Engle

(2002) combined with non-linear shrinkage methods (denoted DCC-NLS), following Engle

et al. (2019). We benchmark this complex estimator to a simple dynamic VCV estimator

driven by an exponentially weighted moving average scheme (i.e., the RiskMetrics approach
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(RiskMetrics, 1996)). We consider both the standard RiskMetrics estimator (RM) as well

as RiskMetrics augmented with non-linear shrinkage (RM-NLS). We find that these two

dynamic estimators significantly outperform their static counterparts (the NLS estimator) in

terms of minimizing ex-post volatility in all test portfolios, except for the unconstrained GMV

portfolios. In fact, the performance of the RM estimator is on par with that of RM-NLS

for all but the unconstrained GMV portfolio, indicating that further shrinkage is redundant.

The more intricate DCC-NLS estimator only significantly outperforms the simpler RM-NLS

estimator for the two risk-parity test portfolios, but not for the tested GMV portfolios.

These results suggest using a simple approach, such as RiskMetrics, may achieve comparable

performance to more sophisticated models such as DCC.

Finally, we impose two different factor structures to model the VCV matrix of a large

number of assets assuming a small number of driving risk factors. Factor models aim to

improve the stability of VCV estimators by shrinking the component of the VCV matrix

that is not driven by the risk factors. This reduces the dilution of the signals by structure-

free shrinkage estimators (López de Prado, 2019) at the expense of introducing additional

biases through the assumed factor structure (Ledoit and Wolf, 2003). Our analysis indicates

that minimum-variance portfolios do not directly benefit from a factor structure. The

factor structure shows more promise when moving beyond GMV. The exact factor model

estimator achieves the third-lowest volatility for ERC and HRP. Moreover, alternative portfolio

management applications, such as factor-based portfolios, are likely to benefit from a factor

structure to align the VCV estimator with the very factors that are driving active portfolio

risk,

Figure 1 summarizes our key results across the seven VCV estimators and five risk-based

portfolios that we explore. First, we confirm the academic evidence that the unconstrained

GMV portfolio benefits from more complexity in VCV modeling. The according ex-post

portfolio volatility based on the sample VCV is 14.3% and reduces down to 10.9% when

applying the RiskMetrics approach together with non-linear shrinkage. Second, the implicit

VCV shrinkage that arises from incorporating practical considerations into the portfolio

optimization limits the ex-post volatility reduction of more involved VCV estimation choices,

such as accounting for time-series dynamics and imposing factor model structures; for instance,
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the constrained GMV setting shrinks the ex-post volatility range to lie in between 13.4%

and 13.9%, and the shrinkage of this opportunity set is even more pronounced for the other

portfolio statistics. Third, unconstrained GMV portfolios are very concentrated and have

unduly high turnover which eats up any gross return benefit. Indeed, after accounting

for turnover and transaction costs, the Sharpe ratio improvement of more complex VCV

estimators over the sample estimator is reduced, particularly for the more constrained test

portfolios. Specifically, a VCV estimator that combines a simple dynamics model, such as

RiskMetrics with non-linear shrinkage, performs in line with more complex VCV estimators

on realistic test portfolios. Ultimately, these findings highlight practitioners’ need for an

alternative test portfolio to evaluate VCV estimators.

<Insert Figure 1 about here>

We contribute to the literature that explores the intersection of VCV matrix estimators

and risk-based portfolio construction by considering a large asset universe setting. For small

asset universes, Ardia et al. (2017) and Jain and Jain (2019) apply three traditional VCV

matrix estimators on a suite of risk-based portfolios (e.g., GMV and ERC).2 However, their

VCV matrix estimators become numerically unstable or even singular when the number

of assets exceeds the sample size. This yields sub-optimal solutions with poor ex-post

performance due to the magnification of estimation errors by the optimization algorithm

(Michaud, 1989; López de Prado, 2016; Ledoit and Wolf, 2004b). López de Prado (2016; 2020)

refers to this phenomenon as Markowitz’s curse: the diversification benefits are overpowered

by estimation errors in correlations and variances.3 Importantly, Kan and Zhou (2007) show

that the estimation errors in the variance become much more severe than errors in the mean

when the number of assets increases for a constant sample size. This illustrates the need

for well-conditioned VCV estimators for large asset universes. We expand on this literature

by applying a wide range of state-of-the-art VCV estimators on several risk-based portfolio

construction methods in a relevant investment universe, where we consider performance

2Ardia et al. (2017) consider six asset universes with 7–30 assets and Jain and Jain (2019) consider five asset
universes with ten assets each.

3This curse is derived from a high condition number, i.e., the absolute value of the ratio between the maximum
and minimum eigenvalues of the correlation/VCV matrix. If this ratio is high, a small change of an element
in the VCV matrix leads to a completely different inverse.
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measures beyond ex-post volatility.

Our findings emphasize the importance of prudent test portfolio selection when evaluating

VCV matrix estimators. We find discrepancies between the optimal VCV matrix estimator

among different risk-based portfolios. As such, VCV estimators that have only been tested

on unconstrained GMV portfolios, which is the standard practice in the academic literature,

may not be the best choice for portfolios with meaningful investment constraints. Indeed,

unconstrained and long-only GMV portfolios come with high levels of portfolio concentration

and turnover, they show poor risk-adjusted returns, rendering them unsuitable candidates

for evaluating VCV estimators. Our maximum-weight-constrained long-only GMV portfolio

with transaction cost penalty mitigates these adverse properties, and is thus a more suitable

test portfolio for evaluating new VCV matrix estimators on. Compared to the other GMV

portfolios, this portfolio gives up some volatility reduction in return for higher net Sharpe

ratios and more realistic portfolio characteristics.

The remainder of this paper is structured as follows. Section 2 and Section 3 describe the

risk-based portfolios and VCV matrix estimators used in the analysis, respectively. Section 4

presents the set-up of the empirical analysis including the data descriptions and performance

metrics, and the results. Section 5 concludes.

2. Designing test portfolios for evaluating variance-covariance estimators

Classical Markowitz (1952) mean-variance portfolio optimization that trades off expected

risk and return often suffers from estimation error, producing concentrated portfolios that may

disappoint ex-post from a risk-adjusted performance perspective. Avoiding the forecasting of

expected returns and, in turn, focusing on risk-based portfolio allocation has thus become a

popular area of research. In the realm of mean-variance portfolio optimization, risk-based

portfolio allocation boils down to investigating minimum-variance portfolios, in which the

VCV matrix is the key determinant of the resulting portfolio. Estimating VCVs is also prone

to estimation error, especially in large asset universes where estimation error of the VCV

becomes larger than that of expected returns (Kan and Zhou, 2007). Academic researchers

have embraced the GMV portfolio as a natural candidate to judge the success of any effort
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to improve the accuracy of VCV estimation.

Although the GMV is a salient use-case in the study of risk-based portfolio allocations,

there are other contenders that could benefit from more precise risk measurement and

management. Therefore, we carefully lay out the different notions of risk-based allocation.

We start with introducing the classical GMV problem along with a set of general constraints.

We then move beyond GMV and present alternative allocation schemes designed to maximize

risk diversification. Such risk-parity strategies can be considered GMV portfolios that are

subject to diversification constraints. While these portfolios strive to equalize single stock

risk contributions to the overall portfolio, we also look into HRP portfolios that leverage the

hierarchical structure inherent in the VCV. Lastly, we use simple allocation strategies like

1/N or inverse volatility for benchmarking the more involved strategies. For the portfolios

that do not restrict short selling, we use their analytical formulae, and we resort to convex

optimization for determining the long-only portfolios. Throughout this section Nt denotes

the number of assets in the asset universe on date t.

2.1. Global minimum variance (GMV) portfolio

The GMV portfolio minimizes the ex-ante portfolio variance:

min
wt

w′tΣtwt s.t. ι′wt = 1, (1)

where wt is the vector of asset weights at date t, and Σt is the VCV matrix of dimension

Nt × Nt at date t. This problem, that we refer to as unconstrained GMV (labeled GMV

UNC), has the following analytical solution:

w∗t =
Σ−1

t ι

ι′Σ−1
t ι

, (2)

where ι is a vector of ones with length Nt. The GMV portfolio corresponds to a single

point on Markowitz’s (1952) efficient frontier and requires only the VCV as input. The

unconstrained GMV portfolio is simplistic by nature (e.g., due to the absence of asset

weight restrictions). Still, various studies show that standard GMV portfolios often yield

superior out-of-sample performance compared to other mean-variance portfolios, even when
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performance is measured not only in terms of minimal ex-post risk, but also in terms of

risk-adjusted returns (Jagannathan and Ma, 2003; Haugen and Baker, 1991).

2.1.1. Long-only constraints

Imposing long-only constraints (i.e., wt ≥ 0) to the GMV portfolio (labeled GMV LO) can

be beneficial for two reasons. First, large leveraged portfolios are generally riskier to investors

and often require higher portfolio turnover, thereby reducing net portfolio returns. Second,

long-only constraints bring implicit shrinkage of the VCV matrix estimator (Jagannathan

and Ma, 2003), thus help to mitigate the adverse portfolio effects of estimation error.4

2.1.2. Transaction cost penalty and maximum-weight constraints

Long-only GMV portfolios can be overly concentrated and do not explicitly control

for transaction costs. To construct more practically relevant portfolios, we investigate the

long-only GMV portfolio with a transaction cost penalty in conjunction with maximum-weight

constraints of one percent:

min
wt

w′tΣtwt + λ ·

(
Nt∑
i=1

ct,i|wi,t − w∗i,t−1|+ τfix
t

)
(3)

s.t. ι′wt = 1, wt ≥ 0, wi,t ≤ 0.01, ∀i = 1, . . . , Nt,

where ct,i are the estimated transaction costs of asset i, w∗i,t−1is the weight of asset i one day

prior to the rebalancing date, τfix
t are the fixed transaction costs due to assets leaving the asset

universe on date t, and λ is transaction cost penalty parameter. After evaluating a grid of

transaction cost penalties λ = 10−j for j ∈ {2, 3, 4, 5, 6}, we use λ = 10−3 for each of the VCV

estimators in the main analysis.5 We estimate the stock-specific transaction costs ct,i using

4Zhao, Ledoit and Jiang (2023) compare direct shrinkage of the VCV matrix to imposing gross-exposure
constraints. They find that non-linear shrinkage of the VCV matrix remains beneficial even if moderate
gross-exposure constraints are imposed as long as some short positions are allowed. This is because the
constraints only adhere to one degree of freedom (i.e., the magnitude of the gross-exposure constraints),
whereas non-linear shrinkage methods have Nt degrees of freedom.

5Ledoit and Wolf (2022a) use different values for λ for their static and dynamic estimators. Since they
investigate mean-variance portfolios with transaction cost penalties and an expected return constraint, they
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the model of Briere, Lehalle, Nefedova and Raboun (2020) that requires open-high-low-close

price data.

The maximum-weight constraints of 1% ensure that at least 100 positions are held and

thus force the portfolio to be less concentrated/more diversified. Asset weight constraints

also impose implicit shrinkage on the VCV. The specification we present here extends the

formulation used in Ledoit and Wolf (2022a) by incorporating long-only and maximum-weight

constraints alongside a transaction cost penalty. These constraints produce an investment

objective more closely aligned with a large institutional investor who is predominantly

long-only and sensitive to transaction costs. We label this GMV portfolio variant GMV

CON.6

2.2. Risk-parity portfolios

One feature that makes VCV matrix estimators attractive in the construction of risk-

based portfolios is the option to take diversification into account via the pairwise information

contained in the asset covariances. GMV portfolios implicitly aim to maximize risk diversifi-

cation by minimizing the ex-ante portfolio variance. We investigate two alternative risk-based

portfolios that explicitly aim for optimally risk-diversified portfolios.

2.2.1. Equal Risk Contribution (ERC) portfolio

ERC portfolios aim for an allocation in which every asset contributes equally to the total

portfolio risk, meaning that the risk contribution (RCi,t) to the portfolio by any asset i on

date t is equal to 1/Nt. We numerically optimize the ERC portfolio by minimizing the variance

of the risk contributions:

min
wt

Nt∑
i=1

wi,t[Σtwt]i
w′tΣtwt︸ ︷︷ ︸

RCi,t

− 1

Nt


2

(4)

base their choice on the Sharpe Ratio. Because we consider minimum-variance portfolios, specifically, we
base the choice of λ on a trade-off between the ex-post volatility and the average transaction costs rather
than the Sharpe Ratio.

6We separately run portfolios with maximum-weight constraints and transaction cost penalties. We find
similar results to the combined case, and thus do not report them.
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s.t. ι′wt = 1, wi,t ≥ 0, ∀i ∈ {1, . . . , Nt}.

Importantly, this problem can be expressed as a minimum-variance optimization problem

subject to a diversification constraint, see Maillard et al. (2010). Specifically,

min
w̃t

w̃t
′Σw̃t (5)

s.t.
Nt∑
i=1

log(w̃i,t) ≥ ct, w̃i,t ≥ 0, ∀i ∈ {1, . . . , Nt},

where wi,t =
w̃i,t∑Nt
i=1 w̃i,t

and ct is a constant. Hence, it is natural to consider risk parity as test

portfolios for evaluating VCV matrix estimators where success then is gauged in terms of

the resulting impact on portfolio volatility and diversification. The ex-ante volatility of ERC

portfolios can be directly related to GMV and equally-weighted (EW) portfolios, specifically,

it holds that:

σGMV,t ≤ σERC,t ≤ σEW,t, (6)

thus the ERC portfolio can be interpreted as a middle-ground portfolio between GMV and

EW portfolios.

2.2.2. Hierarchical Risk-Parity (HRP) portfolio

The notion of a hierarchical structure in financial markets is becoming increasingly

popular in modern portfolio theory. Mantegna (1999) established an economically meaningful

taxonomy for stocks in the S&P 500 universe using hierarchical clustering on the correlation

matrix of its assets. Tumminello, Aste, Di Matteo and Mantegna (2005) show that the

instability of VCV matrix characteristics can be reduced through hierarchical clustering.

Standard VCV estimators do not take into account that certain assets are close substitutes of

one another (López de Prado, 2016). Not distinguishing between assets in the asset universe

can produce ill-conditioned VCV estimators that are prone to Markowitz’s curse. López

de Prado (2016) assumes a hierarchical structure on the financial assets, which alleviates

this problem by reducing the number of links between each of the assets to one, resulting

in a minimum spanning tree with N − 1 edges. López de Prado (2016) proposes to build
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a hierarchical risk-parity (HRP) procedure that can be summarized in three steps: (i) tree

clustering, (ii) quasi-diagonalization, and (iii) recursive bisection.7

2.3. Benchmark portfolios

We use three simple portfolio allocation schemes as benchmark portfolios: (i) equally

weighted (EW), (ii) value-weighted (VW), and (iii) inverse-variance (IV). The EW strategy

assigns equal weights to all assets in the portfolio and is a natural candidate as DeMiguel,

Garlappi and Uppal (2009) show that this portfolio can be difficult to beat out-of-sample.

The VW portfolio assigns asset weights proportional to their market cap and this market

portfolio is a classic reference point. Finally, the IV portfolio minimizes portfolio variance

without accounting for risk diversification benefits by assigning weights inverse to the stock’s

historical volatility, that is estimated over the same period as the VCVs. This can be seen as

a special case of a fully-invested GMV portfolio where all off-diagonal elements of the VCV

are set to zero.

3. Estimating large VCV matrices

The key ingredient to determining risk-based portfolio allocations is the VCV matrix.

However, accurate estimation of the VCV matrix is challenging, particularly in large asset

universes. Therefore, it is crucial to produce well-conditioned VCV estimators. The literature

has put forward different methods to estimate the VCV with high precision but which come

with varying degrees of complexity. Drawing inspiration from the literature, we consider

estimators that increase complexity along three dimensions: (i) shrinkage, (ii) time-dynamics,

and (iii) factor structure. This section introduces salient VCV matrix estimators that we use

in our subsequent horse race of different risk-based portfolio allocations.

3.1. Sample estimators in large asset universes

The most common VCV matrix estimator is the unbiased sample estimator, S ∈ RN×N :

7We refer the reader to López de Prado (2016) for further details.
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S = Ê [(rt − r̄)(rt − r̄)′] =
1

T − 1

T∑
t=1

(rt − r̄)(rt − r̄)′, (7)

where rt ∈ RN are the asset returns at time t and r̄ = 1
T

∑T
t=1 rt.

Using the sample estimator for portfolio allocation in large asset universes is problematic.

Large asset universes are synonymous with high concentration ratios (that is, the number

of assets over the number of observations), making portfolios that require inverting the

VCV matrix infeasible due to the (near) singularity of the sample estimator. However, even

when the VCV matrix is non-singular, unbiased sample estimators of the VCV matrix are

well-known for producing unstable portfolios with poor out-of-sample performance in large

asset universes (Jobson and Korkie, 1980; Brandt, 2010; Ledoit and Wolf, 2004b).8 This is

again a manifestation of Markowitz’s curse, where error maximization drives the resultant

portfolios.

3.2. Shrinkage estimators

To reduce estimation errors in the sample mean, Stein (1956) and James and Stein (1961)

established the concept of shrinkage. Ledoit and Wolf (2003; 2004a; 2004b; 2012; 2015; 2017;

2020; 2022b) apply shrinkage to VCV matrix estimation with the aim of achieving more stable

risk-based portfolio performance when the concentration ratio is high. Simple shrinkage

involves combining or averaging two “extreme” estimators to create a better performing and

more stable combined estimator. There are two main approaches to shrinkage: linear and

non-linear.9 The shrinkage estimators that we consider are solely driven by the asset return

data.10

8The concentration ratio could simply be reduced by increasing T . However, this solution is generally not
applicable to financial time series, such as stock returns, given limited data availability and non-stationarity.

9We refer to Ledoit and Wolf (2022c) for a comprehensive overview of various shrinkage estimators developed
over the past 15 years.

10Because not all portfolios in our analysis require VCV matrix inversions, we do not consider direct shrinkage
estimators of the inverse VCV matrix. For examples of shrinkage estimators of the inverse VCV matrix, see
the works of Friedman, Hastie and Tibshirani (2008), Kourtis, Dotsis and Markellos (2012), and DeMiguel,
Martin-Utrera and Nogales (2013).
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3.2.1. Linear shrinkage

The simplest version of linear shrinkage, shrinking the N ×N sample VCV matrix toward

a scalar multiple of the identity matrix (Ledoit and Wolf, 2004b), is specified as:

Σ̂ = (1− κ)S + κqIN , (8)

where κ ∈ [0, 1] is the shrinkage intensity, q ∈ R is a scalar, and IN ∈ RN×N is the identity

matrix. We set q equal to the average of the univariate variances of the sample VCV matrix

estimator, enforcing qIN as the shrinkage target. Throughout the remainder of this paper,

we refer to the linear shrinkage estimator as LS.11 The shrinkage intensity κ is calculated

based on Ledoit and Wolf (2004b) such that it is a consistent estimator of the asymptotically

optimal intensity.

3.2.2. Non-linear shrinkage

A drawback of linear shrinkage is that the shrinkage target has to be determined a priori

based on assumed characteristics of the unknown true VCV matrix (Ledoit and Wolf, 2022c).

In contrast, non-linear shrinkage methods do not require assumptions on the characteristics

of the true VCV matrix. Although non-linear shrinkage methods are more complex, they

have significantly better out-of-sample performance (Ledoit and Wolf, 2022c). We use the

Quadratic Inverse Shrinkage (QIS) estimator of Ledoit and Wolf (2022b), referred to as NLS

throughout this paper. This estimator shrinks the inverse eigenvalues of the VCV matrix.12

3.3. Dynamic estimators

The estimators introduced so far are static and ignore time-variation of the VCV matrix.

Static estimators introduce biases towards older asset returns and ignore the time-variability

and clustering of volatility. In this vein, dynamic estimators allow for time-varying conditional

covariance matrices by assigning different weights to older and more recent asset returns.

11We also consider linear shrinkage toward a constant correlation matrix (Ledoit and Wolf, 2003). Results
are generally inferior compared to the LS estimator.

12We find similar results when implementing the analytical NLS estimator of Ledoit and Wolf (2020).
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Similar to Engle et al. (2019), we apply non-linear shrinkage to the dynamic estimators to

prevent in-sample overfitting and ensure a non-singular matrix. For consistency, we use the

Ledoit and Wolf (2022b) NLS estimator and do not consider other shrinkage methods since

Engle et al. (2019) find non-linear shrinkage to be most effective.

3.3.1. Dynamic conditional correlation model

We estimate the dynamic conditional correlation model with non-linear shrinkage (DCC-

NLS) of Engle et al. (2019). The model extends Engle’s (2019) DCC model, which models

the time-varying conditional volatilities and correlations using a generalized autoregressive

conditional heteroskedasticity (GARCH)-like process. Non-linear shrinkage (in our case: the

NLS estimator) is applied to the correlation targeting matrix to prevent negative eigenvalues

of the matrix. Furthermore, we use the averaged forecast approach of De Nard et al. (2021)

to convert the DCC estimator (which is a prediction for the next day) to a prediction for the

next month.

3.3.2. RiskMetrics

Accounting for dynamics based on the described DCC-NLS estimator introduces significant

complexity. Therefore, we also consider a simple dynamic estimator that is popular among

practitioners, the RiskMetrics (1996) estimator (RM). This estimator weights the observations

by a decay parameter ξ−(T−t). Here, T is the current date and t is the date of some earlier

observation. We set ξ = 0.99734, which roughly corresponds to a half-life of one year. We

refer to this estimator as RM.

Because the RM estimator, by itself, does not account for poor conditioning of the VCV

matrix, shrinkage may be beneficial in a large asset universe setting. Therefore, we apply the

NLS estimator to the estimated RM VCV matrix and we label this the RM-NLS estimator.

Although the NLS estimator of Ledoit and Wolf (2022b) is designed for sample VCV matrices

in an iid sample, using NLS allows for the RM-NLS estimator to serve as a middle ground

between the RM and DCC-NLS estimators.
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3.4. Factor models

Factor models are derived from asset pricing theory and focus on specifying a functional

form of stock returns. Factor models reduce dimensionality in asset pricing by attempting to

explain the cross-sectional information of a large number of asset returns (N) based on a

parsimonious set of factors (K). Linear factor models can be represented as:

rt = α +Bft + ut, ∀t ∈ {1, . . . , T}, (9)

where α ∈ RNt is often assumed 0, ft ∈ RK are the factor returns, B ∈ RNt×K is the loadings

matrix, ut ∼ NNt(0,Σu,t) are the idiosyncratic errors, and T is the sample size. Exploiting

this linear factor structure, the VCV matrix of asset returns, Σt, can be written as:

Σt = B′Σf,tB + Σu,t, (10)

where Σf,t is the K ×K factor returns VCV matrix and Σu,t is the N × N residual VCV

matrix on date t.

For Σu,t, we consider both an exact factor model (EFM) and an approximate factor

model design. The difference between EFMs and AFMs is fundamentally a bias-variance

trade-off. EFMs assume that the factors fully explain cross-sectional asset risk, i.e., Σu,t is a

diagonal matrix of static sample variances. AFMs assume a less stringent structure with a

sparse residual VCV matrix, which we model using the DCC-NLS estimator. This estimator

originates from De Nard et al. (2021) and is denoted by AFM-DCC-NLS. De Nard et al.

(2021) find a one-factor structure to be optimal for their AFM-DCC-NLS. Therefore, our

application also uses a one-factor model with the market factor to construct Σf,t for both our

EFM and AFM.13 Ledoit and Wolf (2022c) and De Nard et al. (2021) find no improvements

in the performance of their factor-model-based estimator when they allow for time-variation

of the factor VCV matrix. Because the main objective of this paper is to compare common

13We tested various specifications including Principal Components Analysis and the Fama-French three-factor
model (Fama and French, 1993), and found that our results are robust to the choice of factor model. We
focus on the one-market-factor model for brevity and to keep our methodology consistent with the findings
of De Nard et al. (2021).
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VCV estimator choices from the literature rather than finding the overall ‘best’ estimator, we

also do not model a time-varying factor VCV matrix or factor loadings.

4. Horse racing VCV estimators in risk-based portfolios

4.1. Empirical design

4.1.1. Data

Our asset universe comprises constituents of the S&P 500 index from January 1, 1990,

through December 31, 2021. The data consists of daily stock-level returns, market capital-

ization, and open-high-low-close prices, sourced from Refinitiv Datastream. We take daily

and monthly Treasury bill rates, market, and factor returns from the Kenneth French Data

Library. Treasury bill rates are used as the risk-free rate to calculate excess returns. Lastly,

we obtain returns of the Low-Volatility factor and VIX data from the FRED.14

VCV matrices are estimated using a moving window approach. While we have investigated

windows of one, three, and five years, we focus on presenting results based on the three-year

window, thus enabling a streamlined exposition. VCV matrix estimates are provided to each

portfolio construction method, where we rebalance portfolios on the last trading day of each

month. Portfolios are then held for one month and subsequently rebalanced. On the first

trading day of the month, the asset universe includes all assets that are part of the S&P

500 on that day, and have data available on every day during the in-sample period (that is,

during the estimation rolling window). If asset return data is missing in the out-of-sample

period, we set it equal to zero.

To gauge the practicality of the resulting risk-based portfolio allocation we compute

portfolio performance net of transaction costs. The asset-specific transaction costs are

estimated using the model of Briere et al. (2020) that requires open-high-low-close price data.

Figure 2 presents the distribution of estimated transaction costs. The range of transaction

costs is fairly wide in the early 1990s, with maximum stock-specific transaction costs exceeding

200bps. The median transaction cost started out at 80bps but quickly dropped to 50bps

14See the websites https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html,
https://www.robeco.com/en-int/insights/2022/04/data-sets-volatility-sorted-portfolios, and
https://fred.stlouisfed.org/series/VIXCLS.
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around 2000 and below 20bps in 2005. Specifically, the median transaction cost is 4.3bps

since 2005. These numbers are in line with other studies, e.g., Corwin and Schultz (2012),

Abdi and Ranaldo (2017), and Ardia, Guidotti and Kroencke (2022).

<Insert Figure 2 about here>

4.1.2. Performance metrics

We evaluate each portfolio in the upcoming horse race using several ex-post performance

metrics. In line with Lee (2011), the main performance criterion is the annualized ex-post

portfolio volatility, computed as the standard deviation of the out-of-sample portfolio returns.

As ERC portfolios can be reformulated as minimum variance optimizers, ex-post volatility

also closely aligns with the ex-ante objective of all risk-based portfolios. We use the pairwise

variance test of Ledoit and Wolf (2011) to determine whether differences in ex-post volatility

between two estimators are statistically significant.

To keep the amount of testing tractable, we do not test every possible pairwise combination

of estimators. Instead, as the complexity of the estimator increases we typically use a simpler

model as the benchmark to test against. Specifically, the LS estimator is tested against

the Sample estimator; the NLS estimator against the LS estimator; the RM-NLS estimator

against the NLS estimator; the DCC-NLS estimator against the RM-NLS estimator; the

EFM estimator against the Sample estimator; and the AFM-RM-NLS estimator against the

RM-NLS estimator. The ex-post p-values are adjusted using the Holm (1979) correction to

control for the family-wise error rate, accounting for the seven comparisons we make.

In addition to ex-post volatility, we calculate (risk-adjusted) returns (both gross and net

of transaction costs), portfolio concentration, and turnover, which are all of practical interest

to investors. With regards to portfolio concentration, we calculate three measures. The

average number of positions with an absolute weight greater than 0.001% (POS), the average

monthly sum of the largest absolute 10% of positions (MAXW), and the average monthly

effective portfolio weights (i.e., the inverse of the sum of the squared portfolio weights, denoted

WEFF). We note that for highly leveraged long-short portfolios, the measurement of WEFF

can become distorted. However, WEFF still provides a meaningful comparison point when

comparing portfolio concentration within and across different portfolio construction methods.
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4.1.3. Covariance estimator and portfolio overview

Table 1 provides an overview of the VCV estimators and risk-based portfolios used in the

subsequent analyses.

<Insert Table 1 about here>

4.2. Evaluating VCV matrix estimators by ex-post portfolio volatility

Table 2 shows the ex-post volatility of the benchmark portfolios, risk-based portfolios,

and selected VCV matrix estimators detailed in Table 1. Specifically, for each risk-based

portfolio and VCV estimator combination, we use a three-year VCV estimator as input to

the risk-based portfolio method. We then calculate the outperformance of each pair over the

designated benchmark model.

<Insert Table 2 about here>

4.2.1. How does the choice of shrinkage method affect performance?

To set the stage, we first report the ex-post volatilities of the three benchmark strategies.

The market portfolio, i.e., the S&P 500, has an annualized volatility of 18.6%, while the equal-

weighted portfolio’s volatility is one percentage point higher (19.7%); the inverse variance

portfolio has a volatility of 16.9%. Against this backdrop, the unconstrained GMV obtains

an even lower volatility (14.3%).

Importantly, moving from the sample estimator to the shrinkage estimators clearly

reduces the ex-post volatilities of the unconstrained GMV portfolio further, giving volatilies

between 11.0% (NLS) and 11.9% (LS). Given that the unconstrained GMV portfolios can

short assets, it is not surprising to see considerably lower ex-post volatilities than that of

the long-only benchmark portfolios. Nevertheless, enforcing long-only constraints (while

increasing the overall level of portfolio volatility) still brings about substantial volatility

reduction relative to the benchmark portfolios. In addition, the range of volatilities is

considerably shrunk relative to the unconstrained base case. However, imposing long-only

constraints diminishes this added value of shrinkage estimators and the differences in ex-post
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volatility between the two shrinkage estimators. Under long-only constraints, the sample

and shrinkage estimators both reach an ex-post volatility of 12.5%. The implicit shrinkage

due to imposing the long-only constraints can explain this loss in volatility reduction for the

shrinkage estimators (Jagannathan and Ma, 2003). Although the shrinkage estimators seem

less useful for improving the stability of the estimator in a long-only setting, they may still

help prevent singularity of the VCV matrix when the asset universe is very large.

In terms of linear versus non-linear shrinkage, the NLS estimator only clearly outperforms

the LS estimator for the unconstrained GMV portfolio. For the long-only portfolios, the

performance of NLS is roughly similar to that of LS (even though the GMV CON indicates

a 5% significant improvement). Hence, we find no conclusive evidence of which static

structure-free shrinkage estimator is best in terms of minimizing ex-post volatility for all

tested risk-based portfolios.

4.2.2. Do dynamic estimators outperform static estimators?

Moving from (structure-free) static estimators to (structure-free) dynamic estimators,

the discrepancy between the unconstrained GMV portfolios and the remaining long-only

portfolios becomes most evident. The simple RM estimator and the DCC-NLS estimators are

among the worst performers in terms of minimizing ex-post volatility for the unconstrained

GMV portfolio. Hence, the choice of shrinkage estimator is more important than the choice

of dynamic estimator in the unconstrained GMV portfolio. The combination of RM with the

NLS estimator yields the lowest ex-post volatility but the outperformance of RM-NLS over

the static NLS estimator is not significant on a 5% level.

For the long-only GMV portfolios, however, both RM and DCC-NLS are among the best

three estimators. Given that the benefits of shrinkage diminish once long-only constraints

are imposed, the additional flexibility of the dynamic estimators seem a meaningful resort

to further improve ex-post volatility. The good performance of the HRP portfolio with the

DCC-NLS estimator is a natural extension of the findings of Jain and Jain (2019), who find

the DCC estimator optimal in small asset universes.
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4.2.3. Do minimum-variance problems benefit from a factor structure?

Lastly, we investigate whether accounting for a factor structure is important in VCV

estimation. It turns out that—setting aside the two risk-parity portfolios—EFMs are among

the worst estimators in terms of minimizing ex-post volatility. This suggests that the

additional bias outweighs the benefits of reduced estimation errors; arguing in favor of AFMs

rather than EFMs to limit this structural bias (if one does not wish to shrink the components

of the VCV matrix estimator driven by the risk factors). However, AFM-DCC-NLS does not

improve upon the structure-free DCC-NLS estimator in any of the risk-based portfolios.

4.2.4. Portfolio risk comparison

Having covered all VCV matrix design choices, we next discuss the general risk properties

of the risk-based portfolios, as measured by the ex-post volatility. The choice of VCV matrix

estimator is most impactful for the unconstrained GMV portfolio. Once long-only constraints

are introduced, the opportunity set for VCV estimators is reduced, as the implicit shrinkage

takes effect. This is apparent in GMV LO, but gets more prominent in GMV CON, only

allowing for a narrow range of ex-post volatilities from 13.4% (RM-NLS) to 13.9% (EFM).

In unreported results, we compare the estimation windows and observe that the ex-post

volatility decreases when the estimation window decreases for the long-only GMV, ERC,

and HRP portfolios.15 This indicates that the adverse effects of the higher concentration

ratios are smaller after applying shrinkage than the benefits of estimating the VCV matrix

excluding older asset returns. Conversely, the ex-post volatility of the unconstrained GMV

portfolio increases or remains relatively constant when decreasing the estimation period for

all VCV estimators except EFM.

4.2.5. Subperiod analysis

Panels C and D of Table 2 show how the ex-post volatility of the risk-based portfolios

differs in high- and low-volatility periods. When the VIX index is above (below) its five-year

moving average we consider the period a high-volatility (low-volatility) period and we thus

15These results are available upon request.
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divide the sample period into 52% high-volatility periods and 48% low-volatility periods,

respectively. Not surprisingly, the level of ex-post volatilities is the highest during high-

volatility periods. For instance, average market volatility then stands at 25.0% whilst low

volatility periods see a figure of 10.6%. By and large, the evaluation of estimators by volatility

regime is consistent with the presented full sample evidence. For instance, the RM, RM-NLS

and DCC-NLS estimators consistently outperform the other estimators in the long-only GMV

portfolios and are among the best performers in the risk-parity portfolios.

4.3. Risk-based portfolios in practice

Having evaluated risk-based portfolios from an ex-post volatility perspective, we won-

der about their practical relevance. To this end, we investigate the risk-based portfolio’s

performance statistics, specifically looking into the performance drag imposed by portfolio

turnover. We also scrutinize the distributions of portfolio weights to gauge overall portfolio

concentration and diversification.

4.3.1. Global minimum variance portfolios

Table 3 presents the detailed performance statistics for the benchmark portfolios, the four

GMV portfolios, and the two risk-parity alternatives. As expected, the unconstrained GMV

portfolio achieves the lowest ex-post volatility. Although GMV UNC allows for considerable

reductions in portfolio volatility, one has to be mindful that these reductions rely on highly

levered long and short portfolio positions. For instance, the unconstrained GMV based on

the sample VCV comes with an average gross-exposure of 1,062%. Notably, modeling a more

structured VCV helps reducing such gross-exposure (with the EFM variant having the lowest

gross-exposures, 236%). Still, these portfolios display unduly high portfolio turnover, ranging

from 24.0% (EFM) to 556.3% (AFM-DCC-NLS) in terms of one-way monthly turnover.

As a consequence, corresponding transaction costs eat into the GMV UNC performance,

considerably reducing net returns and Sharpe ratios.

<Insert Table 3 about here>

Finally, the top ten names of GMV UNC make up a large share of the portfolio weights
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and the effective portfolio weights range between 3.0 (Sample) and 47.0 (EFM), highlighting

the poor diversification properties of unconstrained GMV portfolios.16 The sobering verdict

is that GMV UNC is of little practical relevance and thus not particularly informative for the

choice of VCV estimators in actual portfolio management settings. Therefore, we investigate

more realistic GMV variants, one with long-only constraint and one with tighter maximum

stock weights as well as a transaction cost penalty.

By design, long-only GMV variants come with a reduced gross-exposure of 100%.

Still, turnover statistics are elevated and range from 13.0% (EFM) to 95.1% (DCC-NLS)—

suggesting that the consideration of covariance dynamics can become costly. Indeed, such

DCC-modeling results in the lowest net Sharpe ratio for the DCC-NLS model (0.46). Mod-

eling dynamics via RiskMetrics is less turnover-intensive, rendering the RM-NLS variant

the long-only GMV portfolio with the highest net Sharpe ratio (0.63). Notwithstanding,

long-only GMV portfolios are generally too concentrated to be considered viable alternatives

in practice; the effective portfolio weights are consistently below 32.0. This finding is in line

with Clarke et al. (2011), who rationalize that the long-only GMV portfolio tends to only

select assets with low market exposures.

To compare the long-only GMV portfolio for different VCV estimators, Table 4 shows the

average number of assets in the top ten largest portfolio positions of both two portfolios and

their mutual tracking errors. Given the explicit shrinkage effects of long-only constraints,

the static structure-free shrinkage estimators display the lowest mutual tracking errors with

the sample estimator (0.49% for LS, 1.49 for NLS). Of their top ten portfolio positions, 9.65

overlap with the sample estimator for LS and 8.56 for NLS, on average. The estimators

with the largest volatility differentials have the highest tracking errors and largest number of

non-overlapping positions. This holds for the best estimators in terms of minimizing ex-post

volatility DCC-NLS and the worst estimator EFM (a mutual tracking error of 8.48% and

only 3.10 mutual positions).

<Insert Table 4 about here>

Against this backdrop, we next enforce more diversified GMV portfolios by complementing

the long-only constraint using upper weights constraints (wt ≤1%) as well as a transaction

16POS, MAXW, and WEFF are all computed using absolute portfolio weights.
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cost penalty. As a result, portfolio concentration is considerably reduced, seeing the top ten

names making up almost exactly 10% for all considered VCV estimators.17 Unsurprisingly,

the GMV portfolio optimization sees most portfolio names testing the upper bound of 1%,

resulting in portfolios that have hardly more than 100 names in total. In addition to improved

portfolio diversification, one enjoys reduced turnover and transaction costs, resulting in

consistently higher net Sharpe ratio compared to the GMV LO portfolios. On average, the

transaction costs drop by more than 50% compared to the long-only portfolios. Since we apply

the same penalty λ = 10−3 to all VCV estimators, the dynamic estimators still have a higher

level of turnover and transaction costs. Table A.1 shows the effect of different transaction

cost penalties on ex-post volatility and transaction costs. While applying a higher penalty to

the dynamic estimators would result in equal levels of transaction costs, this may come at

the cost of higher volatility. Naturally, the implicit shrinkage brings about a reduction in the

opportunity set for any given VCV estimator.

4.3.2. Beyond GMV portfolios

Table 3 also presents the performance statistics and portfolio characteristics of the two

risk-parity alternatives. While the HRP portfolio has similar turnover figures as the long-only

GMV portfolio, the classic ERC portfolios display the lowest turnover statistics across all

tested strategies. Except for the DCC-NLS VCV, ERC shows single-digit turnover numbers.

Naturally, dynamic modeling of the VCV calls for higher turnover with risk-parity strategies,

albeit at a lower level. Although ERC and HRP have, on average, the same amount of

non-negligible positions (488), the HRP portfolio is more concentrated than the ERC portfolio

as its top ten names consume between 7.0–11.7% of the total portfolio (relative to 5.3–7.1%

for ERC). Moreover, the number of effective portfolio positions is consistently the highest for

the ERC portfolio ranging from 366.0 (EFM) to 411.0 (LS) making the ERC portfolio the

least concentrated among the risk-based portfolios. This finding is in line with the notion that

this portfolio serves as a middle ground between the EW and long-only GMV portfolios. As

a result, the estimated transaction costs are 1–3bps for ERC which is on par with naive EW

strategies but around 4 times higher than the transaction cost of the VW market portfolio.

17The 10% threshold is marginally exceeded for some estimators due to rounding.
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The emerging net returns are on par or higher than those of the market portfolio, yet, the

corresponding net Sharpe ratios are very much comparable to that of the GMV LO portfolios

and smaller than the GMV CON portfolios, owing to the higher risk level of the risk-parity

strategies.

Examining the effect of the choice of VCV estimator for ERC and HRP portfolios, we

observe a spread of only 0.4% (ERC) and 0.8% (HRP) in ex-post volatility across the VCV

estimators. This indicates a significantly reduced opportunity set for the VCV estimators.

We find that shrinkage does generally not result in significant volatility reduction relative

to the sample estimator. However, with the exception of AFM-DCC-NLS, the dynamic

estimators all significantly outperform their static counterparts. ERC and HRP are also the

only portfolios where EFM improves upon the sample estimator. Finally, the number of

effective positions is (second) lowest for DCC-NLS, this means that this estimator diverges

most from the equally weighted benchmark. Paired with the fact that this estimator also

yields the lowest ex-post volatility, this result shows that optimal diversification, powered by

a well-conditioned VCV estimator, may improve upon naive 1/N diversification.

4.3.3. Risk-based portfolio selection and factor investing

Regardless of the chosen VCV estimator, we have demonstrated that long-only minimum-

variance investing would have generated higher risk-adjusted returns than a naive market

portfolio (VW). To rationalize this observation, we run a style factor regression of the risk-

based portfolio’s returns to investigate their salient systematic factor exposures. Table 5

reports regression results based on a multi-factor regression featuring an intercept (α) and

seven off-the-shelve factors: Market (MKT), Size (SMB), Value (HML), Profitability (RMW),

Investment (CMA), and Momentum (MOM) factors from the Kenneth French library as well

as the Low-Volatility (LOWVOL) factor. Here, we focus on risk-based portfolio returns based

on the RM-NLS estimator estimated over the three-year estimation window.18 Indeed, all

variations of the GMV portfolio display very low Market betas that are significantly lower

than 1.0, ranging from 0.3 for the unconstrained GMV to around 0.6 for the constrained

variants. The market betas explain the different return levels of the GMV portfolios with

18Other VCV estimators and estimation windows give similar results that are available upon request.
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the average return across VCV estimators increasing from only 8.7% (GMV UNC) to 10.0%

(GMV LO) and 11.4% (GMV CON). The low Market betas are in line with Clarke et al.

(2011) and Scherer (2011), who find that GMV portfolios only select assets with low Market

exposures.

<Insert Table 5 about here>

Moreover, all GMV portfolios load positively on the Low-Volatility factor with highly

significant betas around 0.2–0.3. Such exposures are expected given the risk-based portfolio

objective that renders the GMV portfolios implicitly exploiting the Low-Volatility anomaly.

Outside Market and Low-Volatility factor exposures, we only observe a mild Profitability

exposure for the long-only GMV portfolio, and significant exposures in GMV CON for the

Profitability, Investment and Momentum factors. Taken together such factor exposures

explain two thirds of the variation in long-only GMV portfolio returns and 80% of the GMV

CON portfolio returns, which in both cases leave no significant alpha.

Notably, the two risk-parity variants show some similar factor exposures. We also

document strong loadings on the Low-Volatility, Profitability, and Investment factors and

a Market beta that is significantly lower than 1.0. Unlike the long-only GMV portfolio,

both risk-parity portfolios come with positive Size and negative Momentum exposure. Also,

the ERC portfolio yields significant Value exposures. With ERC being a middle-ground

portfolio in between equal-weighting and minimum-variance, it is natural for it to inherit

some of the EW portfolio’s implicit rebalancing characteristic that prompts selling winners

and buying losers. Overall, more than 90% of the variation in risk-parity portfolio return can

be attributed to such common factor exposures, again leaving an insignificant alpha over the

sample period.

5. Conclusion

The estimation of VCV matrices lies at the heart of risk-based portfolio optimization. The

associated estimation risk unduly exacerbates error maximization in portfolio construction,

particularly when dealing with large asset universes. A plethora of advanced VCV estimators

have been suggested in the literature, and we study the practical value-add of key contenders.
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The tested estimators differ in salient model features regarding their approach to shrinkage,

dynamics, and factor structure.

The key contribution of the present paper is to question the common practice in the

literature of validating VCV estimators based on the ex-post performance of an (unconstrained)

GMV portfolio. We confirm the latter use-case benefits from more complexity in VCV

modeling, resulting in a reduction of ex-post volatilities that tends to boost the GMV

portfolio’s Sharpe ratios. Yet, we argue that there are more portfolio characteristics to

consider for demonstrating the practical value-add of new VCV estimators. Specifically,

unconstrained GMV portfolios come with very high turnover and thus transaction costs that

(more than) erode any observed gross benefits. Moreover, the ensuing portfolios concentrate

portfolio weights on very few names, defeating the core principle of portfolio diversification.

Against this backdrop, we focus on more realistic test portfolios, including more diversified

GMV portfolios as well as two risk-parity propositions. Constraining portfolio weights brings

more realistic GMVs that have lower turnover and costs, though portfolio concentration is

still high. Importantly, while the implicit shrinkage imposed by the asset weight constraints

renders the opportunity set for linear and non-linear shrinkage methods marginal, dynamic

covariance modeling is still rewarded. Interestingly, VCV modeling via the RiskMetrics

approach is found to be on par with more intricate DCC-NLS modeling when considering

constrained GMV portfolios.

Lastly, we investigate two salient risk-parity strategies, ERC and HRP. Both improve

upon the tested GMV variants in terms of portfolio diversification and turnover. By design,

these strategies operate at a higher absolute level of volatility and we find them offering even

less opportunity for the various VCV estimators to impact the associated ex-post volatilities.

By and large, the relative ranking of VCVs for the risk-parity use-cases mirrors that of

the constrained GMV use-cases, and dynamic VCV modeling is still deemed relevant (with

DCC-NLS outperforming RiskMetrics-NLS in a statistically significant manner). In terms of

economic significance, however, the more sophisticated estimators hardly improve the ex-post

volatility of these more realistic portfolios, especially when compared to the unconstrained

GMV case.

Our findings emphasize the importance of risk-based portfolio selection when evaluating
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VCV estimators. As of this writing, the ex-post volatility of the traditional GMV portfolio

is the key validation criterion in the academic literature. We recommend against directly

implementing estimators that were empirically found to be optimal solely based on this

criterion alone. Instead, estimators should be evaluated based on the objective of the risk-

based investor whilst enforcing meaningful investment constraints. At the minimum, we

propose using a long-only GMV portfolio with maximum-weight constraints and a transaction

cost penalty as the starting point for evaluating VCV matrix estimators in large asset

universes. Such realistic test portfolios suggest that the overall room for improvement from a

given VCV estimator is limited, but one might though make a difference that sometimes is

deemed statistically significant.
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Figure 1: Key portfolio properties across tested VCV estimators and portfolios
This figure presents the key portfolio properties obtained from implementing alternative VCV
estimators for different test portfolios. Details on the used acronyms for estimators and test
portfolios can be taken from Table 1. The upper left panel shows ex-post volatility, the upper
right shows annualized gross returns, the lower left panel shows average monthly portfolio one-way
turnover, and the lower right panel shows net Sharpe ratios. Within each panel the range of observed
portfolio statistics is highlighted by a colored bar. The portfolio metrics are calculated over the full
out-of-sample period from January 1, 1995, to December 31, 2021.
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Figure 2: Quantile plots of the estimated stock-specific transaction costs
This plot shows the cross-sectional minimum, median, maximum, and the top/bottom 10% and 25%
quantiles of the stock-specific transaction costs in basis points. The sample period is from January
1, 1990, to December 31, 2021.

29

Electronic copy available at: https://ssrn.com/abstract=4684926



Table 1: Description of VCV matrix estimators and risk-based portfolios
This table presents a descriptive glossary of the VCV matrix estimators (Panel A) and risk-based
portfolio construction methods (Panel B) that we use. The far right Benchmark column in Panel A
displays the choice of benchmark estimator that each VCV matrix estimator is evaluated against.
The estimators below the horizontal line in Panel A make use of a factor structure. The GMV UNC
portfolio does not use long-only constraints. All other portfolios use a long-only constraint.

Panel A: VCV matrix estimators

Estimator Description Benchmark

Sample Sample estimator -

LS Linear shrinkage toward a scalar multiple of
the identity matrix

Sample

NLS Quadratic shrinkage of the inverse eigenvalues LS

RM RiskMetrics estimator Sample

RM-NLS RiskMetrics estimator with NLS NLS

DCC-NLS Dynamic conditional correlation model with
NLS

RM-NLS

EFM Exact factor model with diagonal residual
VCV matrix

Sample

AFM-DCC-NLS Approximate factor model with the DCC-NLS
estimator used for the correlation targeting
matrix

DCC-NLS

Panel B: Risk-based portfolios

Portfolio Description

GMV UNC Unconstrained Global minimum variance
portfolio

GMV LO Global minimum variance portfolio with
long-only constraints

GMV CON Global minimum variance portfolio with
long-only constraints, maximum-weight
constraints and transaction cost penalty

ERC Equal risk contribution portfolio

HRP Hierarchical risk-parity portfolio
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Table 2: Ex-post volatility of the risk-based portfolios
This table presents the ex-post volatility of risk-based portfolios driven by various VCV matrix
estimators over the full out-of-sample period (Panel B) from January 1, 1995, to December 31,
2021, and during high- (Panel C) and low-volatility (Panel D) periods. High- and low-volatility
periods correspond to dates on which the VIX index is above or below its five-year moving average,
respectively. Panel A presents the realized volatility of the three benchmark portfolios. The top
three performers of each risk-based portfolio are in bold face. * and ** indicate a 5% and 1%
statistically significant reduction in ex-post volatility after a Holm correction for multiple testing.
Differences in ex-post volatility are tested as follows: (1) Sample versus LS (2) LS versus NLS, (3)
Sample versus RM, (4) NLS versus RM-NLS, (5) RM-NLS versus DCC-NLS, (6) Sample versus
EFM, and (7) DCC-NLS versus AFM-DCC-NLS.

Panel A: Benchmark portfolios

VW EW IV

Full sample 18.6 19.7 16.9

High volatility regime 25.0 26.4 22.7

Low volatility regime 10.6 11.3 9.6

Panel B: Full sample

GMV UNC GMV LO GMV CON ERC HRP

Sample 14.3 12.5 13.6 17.5 16.3

LS 11.9** 12.5 13.7 17.5 16.3

NLS 11.0** 12.5 13.6* 17.5** 16.3

RM 14.7 12.0** 13.4** 17.3** 16.1**

RM-NLS 10.9 12.0** 13.4** 17.3** 16.1**

DCC-NLS 13.2 11.8 13.5 17.1** 15.5**

EFM 16.2 14.3 13.9 17.2** 15.9**

AFM-DCC-NLS 13.7 12.4 13.5 17.4 16.1

Panel C: High volatility regime

GMV UNC GMV LO GMV CON ERC HRP

Sample 17.6 16.4 18.1 23.4 21.8

LS 14.9** 16.4 18.1 23.4 21.8

NLS 14.2** 16.4 18.0** 23.4** 21.9

RM 18.1 15.7** 17.8** 23.2** 21.5**

RM-NLS 14.1 15.7** 17.8** 23.2** 21.6**

DCC-NLS 17.1 15.6 18.0 22.8** 20.7**

EFM 20.5 18.3 18.3 23.0** 21.3**

AFM-DCC-NLS 17.1** 16.2 18.0 23.4 21.5

Panel D: Low volatility regime

GMV UNC GMV LO GMV CON ERC HRP

Sample 10.8 7.9 8.2 10.0 9.3

LS 8.6** 7.9** 8.2 10.0 9.4

NLS 7.3** 7.9 8.2 10.0** 9.4

RM 11.1 7.5** 8.0** 9.9** 9.3**

RM-NLS 7.2* 7.5** 8.0** 9.9** 9.3**

DCC-NLS 8.8 7.1* 8.0 9.9 8.9**

EFM 11.3 9.8 8.7 9.8** 9.1**

AFM-DCC-NLS 10.1 7.8 8.1 10.0 9.2
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Table 3: Performance overview of the risk-based portfolios
This table presents the performance statistics for the risk-based portfolios. The first three rows
present the performance statistics for the three benchmark portfolios. The results presented are
for the S&P 500 universe using a three year estimation period over the full out-of-sample period
from January 1, 1995, to December 31, 2021. We present annualized portfolio volatility (%) (Vol.),
annualized portfolio return (%) (Ret.), annualized portfolio Sharpe ratio (SR), annualized portfolio
Sharpe ratio net of transaction costs (%) (NSR), annualized portfolio transaction costs (bps) (TC),
average monthly portfolio one-way turnover (%) (TO), average monthly number of positions with
weight >0.001% (POS), average monthly sum of the largest 10% of positions (%) (MAXW), the
average monthly effective portfolio weights (WEFF), and average monthly gross portfolio exposure
(%) (GEXP).

Portfolio Estimator Vol. Ret. SR NSR TC TO POS MAXW WEFF GEXP

VW - 18.6 12.2 0.54 0.54 0.38 1.4 488 21.7 115 100

EW - 19.7 13.4 0.57 0.56 1.59 6.8 488 2.1 488 100

IV - 16.9 12.9 0.64 0.63 1.31 6.1 488 6.0 365 100

GMV UNC

Sample 14.3 7.3 0.36 -0.07 74.15 419.5 487 33.5 3 1062

LS 11.9 8.2 0.51 0.24 38.40 208.8 487 27.6 7 704

NLS 11.0 8.4 0.57 0.42 19.87 109.7 487 20.8 17 454

RM 14.7 7.7 0.38 -0.08 80.70 459.5 487 29.6 3 1110

RM-NLS 10.9 8.7 0.61 0.41 24.90 137.0 487 20.9 15 489

DCC-NLS 13.2 11.8 0.73 0.07 104.09 598.0 487 53.7 4 764

EFM 16.2 9.1 0.43 0.41 5.05 24.0 487 24.1 47 236

AFM-DCC-NLS 13.7 9.5 0.54 -0.04 95.15 556.3 487 48.1 3 962

GMV LO

Sample 12.5 9.9 0.62 0.59 4.88 23.0 43 65.4 19 100

LS 12.5 10.1 0.63 0.60 4.60 21.9 48 60.5 23 100

NLS 12.5 10.3 0.66 0.63 3.88 19.0 60 49.4 32 100

RM 12.0 9.8 0.64 0.60 5.93 28.4 41 66.9 18 100

RM-NLS 12.0 10.1 0.67 0.63 5.01 24.5 56 51.9 30 100

DCC-NLS 11.8 8.9 0.57 0.46 16.20 95.1 33 75.1 13 100

EFM 14.3 10.2 0.56 0.55 2.65 13.0 45 56.3 26 100

AFM-DCC-NLS 12.5 10.3 0.66 0.63 3.86 19.0 58 50.2 32 100

GMV CON

Sample 13.7 11.6 0.69 0.68 1.49 11.4 114 10.1 105 100

LS 13.7 11.5 0.69 0.68 1.44 11.3 115 10.1 105 100

NLS 13.6 11.5 0.69 0.68 1.36 10.9 118 10.0 106 100

RM 13.4 11.2 0.67 0.66 1.79 14.0 114 10.1 105 100

RM-NLS 13.4 11.2 0.68 0.66 1.66 13.5 117 10.0 106 100

DCC-NLS 13.5 11.4 0.69 0.66 5.07 42.8 113 10.1 104 100

EFM 13.9 11.4 0.66 0.66 1.22 8.9 114 10.1 105 100

AFM-DCC-NLS 13.6 11.5 0.69 0.68 1.37 10.9 117 10.0 106 100

ERC

Sample 17.5 12.9 0.62 0.61 1.50 6.8 488 5.3 410 100

LS 17.5 12.9 0.62 0.61 1.50 6.8 488 5.3 411 100

NLS 17.5 12.9 0.62 0.61 1.50 6.8 488 5.4 407 100

RM 17.3 12.8 0.62 0.61 1.57 7.1 488 5.4 407 100

RM-NLS 17.3 12.8 0.62 0.61 1.57 7.1 488 5.5 404 100

DCC-NLS 17.1 12.7 0.62 0.61 2.72 13.5 488 5.7 398 100

EFM 17.2 13.0 0.63 0.62 1.56 7.6 488 7.1 366 100

AFM-DCC-NLS 17.5 12.8 0.61 0.60 1.62 7.5 488 5.4 408 100

HRP

Sample 16.3 12.8 0.65 0.63 4.20 20.0 488 7.9 320 100

LS 16.3 12.7 0.65 0.63 4.02 19.3 488 7.6 327 100

NLS 16.3 12.7 0.65 0.63 3.35 16.4 488 7.0 339 100

RM 16.1 12.5 0.65 0.63 4.43 21.1 488 8.1 317 100

RM-NLS 16.1 12.6 0.65 0.63 3.73 18.1 488 7.1 336 100

DCC-NLS 15.5 12.2 0.65 0.62 6.41 34.7 488 11.7 267 100

EFM 15.9 12.7 0.66 0.65 2.38 11.7 488 10.0 277 100

AFM-DCC-NLS 16.3 12.7 0.65 0.63 3.31 16.2 488 7.0 339 100
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Table 4: Mutual tracking error and mutual positions of the long-only GMV portfolio
This table presents the average number of assets that are in the top ten largest positions of both
portfolios, in the upper right matrix. The mutual tracking error is presented in the lower left matrix.
Mutual tracking error and positions are calculated in a pairwise manner for each VCV estimator for
the long-only GMV portfolio. All values are computed for the S&P 500 universe using a three year
estimation period over the full out-of-sample period from January 1, 1995, to December 31, 2021.

Number of Assets

Sample LS NLS RM RM-NLS DCC-NLS EFM AFM-DCC-NLS

Mutual Tracking Error (%)

Sample 9.65 8.56 7.51 7.29 4.31 5.11 7.20

LS 0.49 8.79 7.53 7.43 4.32 5.23 7.21

NLS 1.49 1.11 7.26 7.61 4.22 5.65 6.89

RM 1.94 1.99 2.35 8.78 4.67 4.80 6.60

RM-NLS 2.13 1.94 1.71 1.36 4.58 5.20 6.47

DCC-NLS 5.17 5.11 5.19 4.91 4.92 3.10 5.40

EFM 7.06 6.98 6.60 7.29 6.89 8.48 4.82

AFM-DCC-NLS 2.75 2.73 2.99 2.98 3.10 4.60 7.30
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Table 5: Risk-based portfolio multi-factor exposures
This table presents the results from regressing the time series of monthly excess portfolio returns
derived from the portfolio/estimator combinations against five asset pricing factors: Market mi-
nus risk-free rate (MKT), Size (SMB), Value (HML), Momentum (WML), and Low-Volatility
(LOWVOL). The portfolios are computed using a three year estimation window over the full-out-of-
sample period from January 1, 1995, to December 31, 2021. The GMV, ERC and HRP portfolios are
estimated using the RM-NLS VCV estimator (similar results are obtained for the other estimators).
t-values are shown in parentheses, and computed using HC3 standard errors. * and ** indicate
statistical significance at the 5% and 1% level, respectively. For the MKT factor, the t-values and
significance level are shown with respect to 1.0.

Portfolio VW EW IV GMV UNC GMV LO GMV CON ERC HRP

α (%) 0.00 0.04 0.02 0.05 0.02 0.01 0.01 0.01

(0.09) (0.72) (0.28) (0.29) (0.19) (0.07) (0.16) (0.08)

MKT 0.99 1.01 0.86** 0.34** 0.51** 0.64** 0.90** 0.84**

(-1.21) (0.46) (-6.23) (-11.17) (-12.79) (-10.40) (-4.25) (-7.02)

SMB -0.15** 0.10** 0.05 -0.02 0.04 0.05 0.09** 0.08**

(-14.18) (3.62) (1.92) (-0.32) (0.88) (1.33) (3.42) (2.83)

HML -0.01 0.16** 0.11* -0.09 -0.04 -0.04 0.11** 0.07

(-1.41) (4.62) (2.52) (-0.83) (-0.58) (-0.71) (2.94) (1.62)

RMW 0.05** 0.12** 0.21** 0.13 0.15* 0.22** 0.21** 0.25**

(3.83) (3.35) (5.77) (1.40) (2.32) (3.85) (5.38) (6.44)

CMA 0.06** 0.10* 0.13** 0.10 0.15 0.18** 0.13** 0.16**

(3.82) (2.11) (2.89) (0.90) (1.83) (2.66) (2.98) (3.37)

MOM -0.02** -0.17** -0.09** 0.05 -0.01 -0.05* -0.10** -0.08**

(-2.98) (-8.57) (-4.78) (0.76) (-0.26) (-1.97) (-5.63) (-4.91)

LOWVOL 0.01 0.07** 0.17** 0.30** 0.28** 0.24** 0.11** 0.15**

(1.02) (3.62) (7.63) (4.88) (7.52) (7.20) (5.30) (6.96)

R2 0.99 0.96 0.94 0.37 0.67 0.80 0.94 0.93
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Table A.1: Ex-post volatility and transaction cost of the GMV CON portfolio with
different transaction cost penalty weights.
The results presented are for the S&P 500 universe using a three year estimation period over the
full out-of-sample period from January 1, 1995, to December 31, 2021. λ denotes the weight of the
transaction cost penalty in the optimization problem. We present annualized portfolio volatility (%)
(Vol.) and annualized portfolio transaction costs (bps) (TC).

Vol. TC

λ 10−2 10−3 10−4 10−5 10−6 10−2 10−3 10−4 10−5 10−6

Sample 13.8 13.7 13.6 13.6 13.6 0.52 1.49 2.65 3.25 3.35

LS 13.8 13.7 13.6 13.6 13.6 0.49 1.44 2.58 3.20 3.30

NLS 13.8 13.6 13.6 13.6 13.6 0.46 1.36 2.44 3.02 3.12

RM 13.6 13.4 13.4 13.4 13.4 0.59 1.79 3.31 3.99 4.09

RM-NLS 13.6 13.4 13.4 13.4 13.4 0.55 1.66 3.16 3.81 3.91

DCC-NLS 13.6 13.5 13.5 13.5 13.5 1.47 5.07 9.09 10.09 10.21

EFM 14.0 13.9 13.9 13.9 13.9 0.44 1.22 2.02 2.40 2.46

AFM-DCC-NLS 13.7 13.5 13.5 13.5 13.5 0.68 2.19 4.08 4.80 4.91
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