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Traditional mean-variance portfolio
optimization is based on the premise
that investors only care about risk
and return. However, some investors
also have non-financial objectives
such as sustainability goals. We show
how the traditional approach can
readily be extended to mean-vari-
ance-sustainability optimization and
explain why this 3D investing
approach is ex-ante Pareto-optimal.
We illustrate its efficacy empirically
in several studies, including carbon
footprint and sustainable develop-
ment goal objectives. Importantly, we
highlight conditions under which a
3D optimization approach is superior
to a naive 2D approach augmented
with sustainability constraints.
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Introduction

he standard risk and return portfolio framework has been chal-

lenged by numerous approaches that all focus on making invest-

ment decisions based on objectives that are not strictly risk- or
return-based, such as impact investing, socially responsible investing
(SRI), or environmental, social, and corporate governance (ESG) inves-
ting. The proliferation of these sustainable investing (SI) philosophies
highlights how the standard mean-variance framework of Markowitz
(1952) is no longer sufficient. Accordingly, investment practice has
evolved to incorporate sustainability objectives into the investment
problem, with salient examples being metrics related to carbon foot-
print, ESG, and sustainability development goals (SDG). In this article,
we bring together the multi-objective portfolio optimization frame-
work with the real-world implementation of alternative investment
objectives. Specifically, we contrast the common practice of incorpo-
rating sustainability objectives into a portfolio using constraints with
the use of objective function targets and discuss when one may be
preferable to the other.

Sandberg et al. (2009) and Horan et al. (2022) highlight the heteroge-
neity of SRI, where there is no one-size-fits-all approach to developing
sustainability-oriented investment portfolios. Many approaches have
been proposed in the literature that strive to incorporate sustainability
objectives into a portfolio. These include excluding undesirable stocks
from the investment universe (Diltz 1995; Kinder and Domini 1997;
Naber 2001), constraining the portfolio’s exposure to such objectives
(Boudt, Cornelissen, and Croux 2013), and incorporating sustainable
targets into the return/alpha component of the objective function
(Bilbao-Terol, Arenas-Parra, and Canal-Fernandez 2012; Hirschberger
et al. 2013; Utz et al. 2014; Chen and Mussalli 2020). However, a
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core question around the optimal way to incorporate
sustainability objectives into investment portfolios is
underserved.

Investors often target a portfolio carbon footprint
lower than some benchmark or achieving a higher
sustainability score than the benchmark.! These
objectives are naturally suited toward a constraint-
based framework, as benchmark-relative constraints
can readily cater to these investment desires. At low
constraint levels, such as simply being better than
the benchmark, this approach may work well.
However, under more ambitious targets, constraint-
based approaches face several challenges. Blitz and
Hoogteijling (2022) highlight how a constraint on car-
bon footprint can be interpreted as an implicit carbon
tax (on expected return). When the constraint is non-
binding (i.e., redundant), then the tax is effectively
zero. However, when the constraint is binding this
implies a non-zero tax on lowering carbon footprint.
As the constraint becomes more binding, it is implied
that high-carbon footprint stocks are highly attrac-
tive from an expected return perspective and thus
the constraint must apply a large implicit carbon tax
on these stocks to prevent the optimization algorithm
from purchasing them. The empirical question we
aim to answer is whether better ex-post portfolio
return and sustainability characteristics are achieved
when adding the sustainability metric in the objective
function (using a multi-objective optimization frame-
work) or when applying an implicit penalty using
portfolio-level constraints. In other words, is 3D
investing targeting a sustainability objective alongside

risk and return objectives superior to traditional 2D
investing augmented by sustainability constraints?

We answer this question based on two relevant prac-
tical examples of integrating sustainability objectives
into a portfolio. Figure 1 shows how the break-even
transaction cost? of realistic enhanced indexing port-
folios varies when aiming to reduce carbon footprint
or improve SDG scores relative to the MSCI World
benchmark index. We find that for both carbon foot-
print reduction and SDG score improvement, the 3D
investing approach is the superior solution, especially
at more ambitious sustainability targets. Taken
together, our results show that for portfolios that
seek to track the benchmark closely while outper-
forming the benchmark, ambitious sustainability goals
are better implemented using a direct objective func-
tion term, rather than a portfolio-level constraint.
The objective function term allows for a rewarded
time-varying tradeoff of a stock’s expected return
and the stock’s contribution toward the sustainability
objective. It is this flexibility to decide at the portfolio
construction’s run time when it might be better to go
for expected return vis-a-vis sustainability that gives
the superior result of the objective function
approach.

Such an outcome is not surprising, as the 3D inves-
ting optimization framework that we use is ex-ante
Pareto-optimal (Zadeh 1963). That is, for a given
level of expected return, sustainability performance,
and risk level, our approach achieves maximum
expected sustainability performance or expected
return, respectively. Improving one characteristic

Figure 1. The Cost of Implementing an Alternative Objective
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Notes: This figure plots the time-series average break-even transaction cost associated with different levels of benchmark-relative car-
bon footprint reduction and sustainable development goals (SDG) score improvement under an objective function term (3D Objective)
or constraint-based (2D Constraint) portfolio-construction approach. The sample runs from December 1989 to December 2022.



(expected return, sustainability, or risk) requires
accepting a worse result in one or more of the other
characteristics. Pareto optimality adds to the theoret-
ical appeal of our approach and helps rationalize its
empirical value-add.

Notwithstanding the abovementioned, one may argue
that sustainability is simply a risk that can be mea-
sured and incorporated into the risk dimension of the
standard mean-variance optimization framework. This
is certainly a possibility wherein some element of
sustainability could be incorporated into a factor-
based risk model. However, as sustainability defini-
tions are extremely varied and diverse (Berg, Kolbel,
and Rigobon 2022), certain sustainability views do
not neatly fit into traditional risk or return considera-
tions. Having a flexible framework where such views
can easily be incorporated and attributed, apart from
risk and return, is valuable.

This article relates to an extensive literature that
extends the standard mean-variance optimization
framework to incorporate alternative investment
objectives. Hallerbach et al. (2004) introduce a multi-
decision investment framework that incorporates SRI
preferences into the risk-return portfolio-construc-
tion process. Other early efforts focused on the
optimization approaches required for integrating non-
financial objectives into the portfolio optimization
process (Bilbao-Terol, Arenas-Parra, and Canal-
Fernandez 2012; Ballestero et al. 2012; Dorfleitner
and Utz 2012; Utz et al. 2014; Calvo, Ivorra, and
Liern 2015; Calvo, Ivorra, and Liern 2016). In recent
years, the focus shifted to the construction of ESG-
efficient portfolios and how these portfolios relate to
the standard mean-variance efficient frontiers (Chen
and Mussalli 2020; Geczy, Stambaugh, and Levin
2021; Pedersen, Fitzgibbons, and Pomorski 2021;
Schmidt 2020; Shushi 2022; Steuer and Utz 2023;
Wau et al. 2022; Xidonas and Essner 2022;
Alessandrini and Jondeau 2021; Coqueret et al.
2021). We contribute to this literature by demon-
strating the effectiveness of the practical implemen-
tation of these methodologies. Specifically, we show
how the desired portfolio characteristics interact
with the different methods of integrating sustainabil-
ity characteristics into the portfolio.

Ultimately, portfolio constraints are still (and will con-
tinue to be) relevant in the portfolio-construction
paradigm. There are scenarios where minimum port-
folio exposures or sustainability profiles must always
be maintained, and this can only be guaranteed by a
constraint. However, if an investor is targeting long-
run average sustainability objectives and deviations

3D Investing: Jointly Optimizing Return, Risk, and Sustainability

around this average are acceptable, our results show
that 3D investing can deliver portfolios that satisfy
this requirement at lower levels of turnover and
hence higher after-cost performance. Furthermore,
the flexibility of our approach enables taking advan-
tage when a given security’s expected return is par-
ticularly high with respect to sustainability or vice
versa. Thus, when both expected return and sustain-
ability characteristics are important to an investor,
our multi-objective 3D investing framework ensures
the joint optimality of expected return and
sustainability.

Multi-Objective Optimization
Framework

Standard Mean-Variance Optimization.
The classic mean-variance optimization problem can
be written as:
P Y
max /LW,u—EWlZW (1)
st. we=1,

where w is an N x 1 vector of asset weights, u is an
N x 1 vector of expected returns, X is the N x N vari-
ance-covariance matrix, e is an N x 1 vector of ones,
and 4 and y are scalar coefficients. Portfolios gener-
ated under Eq. (1) are mean-variance-optimal in that
they achieve the maximum expected return for a
given level of risk. This framework can be extended
to include additional dimensions, such as constraining
the portfolio relative to some benchmark (Jorion
2003), incorporating transaction cost penalties
(Taksar, Klass, and Assaf 1988; Ledoit and Wolf
2022), penalizing turnover (Hautsch and Voigt 2019),
or enforcing positive asset weights (Jagannathan and
Ma 2003).

A Multi-Objective Optimization
Framework. It is straightforward to extend the
mean-variance optimizer from Eq. (1) to construct
portfolios on an efficient frontier surface in three (or
more) dimensions. In the case of additional sustain-
ability considerations, Eq. (1) can be extended to
three dimensions as follows:

max iw’,u—i—(l—/l)w’us,—%w’Ew
w
st. we=1weQ,

(2)

where ug; is an N x 1 vector of any (discrete or
continuous) sustainability metric, A becomes the rela-
tive preference between the return and sustainability
objectives, and Q is the set of feasible solutions,
which includes any portfolio constraints. This
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formulation is general and can accommodate the
incorporation of common sustainability characteris-
tics. These include commercial ESG metrics from ven-
dors such as MSCI and Sustainalytics, carbon
footprint, SDG scores, and climate transition scores.
The only requirement here is that the sustainability
metric is ordinal.®

This multi-objective optimization technique is called
the weighted-sum method (Marler and Arora 2010;
Stanimirovi¢, Zlatanovi¢, and Petkovi¢ 2011), and the
resulting solutions can be shown to be Pareto-optimal
(Zadeh 1963). This technique allows the construction
of portfolios on a multidimensional efficient frontier
surface. Previously, this type of portfolio construction
has been applied in investment examples such as
Gintschel and Scherer (2004), O'Cinneide, Scherer,
and Xu (2006), Ballestero et al. (2012), Dorfleitner and
Utz (2012), Calvo, Ivorra, and Liern (2015), Chen and
Mussalli (2020), and Steuer and Utz (2023). We adopt
this 3D investing framework in our subsequent empiri-
cal analysis, where we focus on the incorporation of
carbon footprint reduction and SDG score improve-
ments in a benchmark-relative portfolio-optimization
setting. Although we zoom in on two specific applica-
tions, the proposed framework generalizes to any
ordinal measure that can be expressed as a series of
discrete or continuous values.

Data and Methodology

Data. Our sample consists of MSCI World constitu-
ents at the end of every month from December
1989 to December 2022.* We source stock returns
and fundamental data from Refinitiv. Following Blitz
and Hoogteijling (2022), we calculate the carbon
footprint of a stock by dividing scope 1 and scope 2
carbon emissions (sourced from Trucost)® by enter-
prise value including cash (EVIC).® As highlighted in
Busch, Johnson, and Pioch (2020), corporate carbon
data can vary in quality across data vendors, espe-
cially concerning estimated data points. As we are
constructing portfolios from the MSCI World uni-
verse, we need sufficient data coverage. Thus, we
use the company-reported data where available and
use the Trucost-estimated data where data are miss-
ing. EVIC is calculated as the market value of a firm’s
shares plus the book value of its debt. We source
stock-level ESG scores from MSCI, where our data
begins in January 2009. We source SDG scores from
Robeco (Van Zanten and Huij 2022); these are a set
of seven discrete variables between —3 and +3 that
measure a companies’ contribution to the SDGs.” For
carbon footprint, ESG scores, and SDG scores,

4

missing data are filled with the cross-sectional Global
Industry Classification Standard (GICS) subsector
(level 2) median.

In our subsequent empirical analyses, we present
results contrasting portfolio-construction approaches
via multi-objective optimization versus constraints,
where we target carbon footprint reductions and
SDG improvements. Note that we deliberately
choose to not report results for MSCI ESG improve-
ments. This decision is motivated by the skewed dis-
tribution and concentration of MSCI ESG scores in
recent years. Such a changing distribution, whether
empirically warranted or not, makes it increasingly
challenging to incorporate the respective sustainabil-
ity objective into a benchmark-relative portfolio-opti-
mization framework. A changing distribution requires
changing parameters for both constraints and objec-
tive function terms, thus adding further complexity
to the optimization problem. We will revisit the
investment implications of such evolving sustainabil-
ity data following our presentation of the 3D inves-
ting outcomes for carbon footprint and SDG scores.

Portfolio Optimization. We use a portfolio-
optimization setting that mimics the construction of a
real-life investment portfolio applying realistic portfo-
lio constraints and settings. We seek to construct
portfolios with tracking errors in the range of 0.5%
to 1.0%, as this represents the challenging multi-
objective scenario of delivering high expected returns
and sustainability goals with a limited risk budget.
Thus, the design parameters used are reflective of
these lower-tracking error portfolio targets. The
portfolio exposure to regions (defined as North
America, Europe, and Asia Pacific) and GICS level-
one sectors are restricted to +0.5% of the bench-
mark market-capitalization weighted value. Portfolio
weights must be non-negative (i.e., long-only). The
maximum trade size is limited to 25% of a stock’s
average daily volume over the past 65 trading days.
The maximum stock weight relative to the bench-
mark (i.e., active weight) is +0.5%. The maximum
active share of the portfolio is 40%. The gross expo-
sure of the portfolio must be 100% (i.e., fully
invested). We assume that the funds under manage-
ment grow with the realized market return, and we
design the simulations such that the final fund size at
the end of 2022 is EUR 4 billion. We incorporate a
turnover penalty into the objective function, which is
the sum of the squared absolute trade sizes.

As we target specific tracking errors, we transform
the weight vector of Eq. (2) from absolute asset
weights to benchmark relative weights®:



Whew = Wp — Wpp.

Our portfolio-optimization problem for a single time-
step is then given by:

/ P Yo
A1 Whewt + £2Wpey, lis — E Wnewzwnew

_KHWnew - WO’d”r (3)

max
w

where w,y is the portfolio weights immediately
before the rebalance and « is a scaling parameter for
the turnover penalty (we set x = 1), and we incorpo-
rate the previously described constraints. We use a
base set of portfolio-construction constraints and
settings across our simulations, and then we permute
the expected return coefficient A4, risk aversion
coefficient 7, and sustainability coefficient 4, in each
different optimization. Last, we introduce an addi-
tional optional constraint on either carbon footprint
or SDG scores (e.g., portfolio carbon footprint must
be less than or equal to the benchmark carbon
footprint).

Expected Returns and Risk. As inputs of
expected returns u, we use a simple equal-weighted
multifactor score (denoted QMV) consisting of
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quality, momentum, and value signals. For value, we
use an equal-weighted combination of book to price
and 12-month forward earnings to price, ranked
within GICS sectors. For quality, we use an equal-
weighted combination of return on equity and debt-
to-assets. For momentum, we use the previous
twelve-minus-one month return. Each of the four
underlying signals is first rank-standardized between
—1 and +1. The signals are then combined into a sin-
gle multifactor score. We do not aim to construct the
best multifactor score, but rather a simplified score
that is representative of common choices and imple-
mentations of multifactor investment strategies.

Table 1 presents the stand-alone results from con-
ducting portfolio sorts on the sustainability scores;
quality, momentum, and value signals; and the multi-
factor score. At the end of each month, we sort our
stock universe into quintile portfolios and present
the return spread between the top and bottom quin-
tile portfolios earned from holding the portfolios for
one month. Panel A of Table 1 presents standard
portfolio statistics, and panel B presents the correla-
tion between these top-minus-bottom portfolio
returns. We can observe that the sustainability scores

Table 1. Stand-Alone Performance of Single-Factor and Multifactor Quintile Portfolios

A. Performance statistics

Carbon footprint ESG SDG Quality Value Momentum QMV
Mean return (%) -0.03 1.00 0.58 6.29 6.71 7.67 11.35
Volatility (%) 9.07 4.61 6.27 9.73 12.78 17.87 14.00
Sharpe ratio 0.00 0.22 0.09 0.65 0.52 0.43 0.81
Mean CAPM alpha (%) 0.86 1.80 0.15 7.63 5.77 11.22 13.28
Alpha volatility (%) 8.80 4.50 6.17 9.26 12.58 16.37 13.41
Alpha ratio 0.10 0.40 0.02 0.82 0.46 0.69 0.99
Beta -0.13 -0.08 0.07 -0.19 -0.19 -0.46 -0.26
Turnover (%) 217.5 145.3 99.0 217.2 340.7 643.8 511.9
B. T-B return correlations
SDG
ESG -11% 20%
Quality -18% -12% 7%
Value 3% 9% —-8% 2%
Momentum 12% -13% 3% 55%
(o] \%\" 1% -16% 8% 78% 27% 78%

Notes. This table presents the univariate top-minus-bottom (T-B) portfolio statistics of the sustainability measures, investment fac-
tors, and multifactor portfolio. The sample for ESG is from December 2009 to December 2022. The sample for all other results is
from December 1989 to December 2022. Stocks are sorted based on each characteristic into quintile portfolios that are rebalanced
monthly and held for one month. Panel A reports the annualized performance statistics of the T-B portfolio. Alpha is calculated by
regressing the T-B portfolio return on the market return in excess of the risk-free rate. Turnover is the annualized one-way portfolio
turnover (e.g., a value of 2,400% per year corresponds to fully replacing the top and bottom portfolio each month). Panel B reports

the correlation of the T-B portfolio return series.

ESG = environmental, social, and corporate governance; QMV = quality, momentum, and value multifactor strategy; SDG = sustainable

development goals; CAPM = capital asset pricing model.
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tend to have low top-minus-bottom returns and
alphas over the market return, while we see that the
common quality, momentum, and value factors have
significant capital asset pricing model (CAPM) alphas
with high Sharpe ratios. From a correlation perspec-
tive, we observe consistent and positive correlation
among quality, momentum, and value, while the cor-
relation between sustainability scores and QMYV is
close to zero. This highlights the differentiating
nature that these selected sustainability measures
can have in contrast to typical measures of expected
returns.

As for expected risk, we use a standard variance-
covariance matrix (X) that follows a latent factor
model approach where we apply PCA with 20 com-
ponents to the sample variance-covariance matrix
estimated using 60 months of daily returns data. We
use five-day overlapping returns to account for mar-
ket asynchronicity (Burns, Engle, and Mezrich 1998;
Martens and Poon 2001).

Empirical Results

Mean-Variance-Sustainability Frontier.
Before constructing the fully optimized portfolios
across an extended period, we first compute an ex-
ante view on expected return, risk, and sustainability.
Consequently, the traditional 2D efficient frontier
between risk and return transforms into a 3D efficient
surface. Figure 2 presents the ex-ante 3D efficient
surface among tracking error, expected return, and
benchmark-relative carbon footprint as of December
2022. The surface is colored from green (lower car-
bon footprint than benchmark) to magenta (higher
carbon footprint than benchmark). We additionally
plot the simple 2D mean-variance efficient frontier
(solid black line). We observe the first important
result, which is the divergence between the perfor-
mance of the “green” region (high values of carbon
footprint reduction) and the “magenta” region. In the
green region, for a given tracking error, higher
expected returns require sacrificing carbon footprint
reduction (i.e., the surface is coming toward the
reader). In the magenta region, for a given tracking
error, we typically observe that the carbon footprint
reduction remains constant as the expected return
increases (i.e., the surface is shaped like a canonical
mean-variance efficient frontier). This result high-
lights how the expected return-tracking error effi-
cient frontiers change for a given level of carbon
footprint reduction.

6

While Figure 2 depicts a 3D surface, Figure 3
presents the ex-ante risk-return-sustainability effi-
cient surfaces as a collection of topographical lines
for both carbon footprint and SDG scores. Panel A
shows the standard “risk-return efficient frontiers,”
where each additional frontier away from the tradi-
tional “maximum risk-return efficient frontier” corre-
sponds to a higher sustainability target.” Panel B
presents the “risk-sustainability efficient frontiers
where each additional frontier corresponds to a
higher expected return target. In general, for both
carbon footprint reduction and SDG improvement, as
the desired sustainability or expected return goals
increase, the achievable efficient frontiers move fur-
ther away from the maximal risk-return or risk-sus-
tainability efficient frontiers, respectively. There is
thus room to reduce the portfolio carbon footprint
without incurring significant tracking error increases
or expected return decreases. For example, at a
tracking error of 2%, there is effectively no expected
return difference between 0% reduction and 60%
reduction. However, for the SDG score improvement,
any increase above the benchmark level typically
requires sacrificing expected return or increasing ex-
ante tracking error.

»10

The results in Figures 2 and 3 demonstrate how, at
lower tracking errors, one typically needs to sacrifice
expected return if one wants to meaningfully
improve portfolio sustainability. As the tracking error
increases, the upper bound of the risk-return-sustain-
ability efficient surface tends to be closer to the max-
imum risk-return or risk-sustainability efficient
frontiers, reflecting the larger available opportunity
set. An alternative way of viewing this is through the
lens of the minimum ex-ante tracking error required
to implement a given carbon footprint reduction. For
example, in December 2022, a 50% carbon footprint
reduction required a minimum ex-ante tracking error
of around 0.75%, while a 70% carbon footprint
reduction required a minimum ex-ante tracking error
of 1.75%. Ignoring any correlation between carbon
footprint and expected returns, if you have a tracking
error budget of 1.00% and you use 0.75% of your
risk budget to achieve the desired carbon footprint
reduction, there is less risk budget available to take
expected return exposure. However, if your tracking
error budget is 5.00%, you have relatively more risk
budget available to increase your exposure toward
expected returns and thus are more likely to be able
to jointly satisfy your sustainability and expected
return objectives.

Thus, while the multi-objective optimization frame-
work we propose and implement is generalizable
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Figure 2. Ex-Ante Mean-Variance-Carbon Footprint Reduction Efficient Surface
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Notes: This figure plots the ex-ante expected return-tracking error-sustainability surface for carbon footprint reduction. The solid
black line corresponds to the ex-ante expected return-tracking error efficient frontier. The surface is shaded based on the y-axis

variable (carbon footprint reduction relative to the benchmark), where green corresponds with a higher reduction and magenta with
a lower reduction. This surface was calculated using data as of December 2022.

across all portfolios, it is of particular relevance for
lower-tracking error portfolios that wish to achieve
ambitious sustainability targets. Hence, our empirical
use cases will focus on low-tracking error
portfolios.

Reducing Carbon Footprint. A common sus-
tainability objective of an investment portfolio is to
reduce the carbon footprint relative to some bench-
mark, with the aim of steering the portfolio away from
carbon-emitting companies. A basic way to achieve
this objective is to enforce a portfolio constraint, such
that the portfolio’s carbon footprint must always be at
least y% better than the benchmark. Although such an

approach will guarantee adherence to this require-
ment, it can lead to suboptimal performance.

A constraint-based approach implies a time-varying
carbon tax on expected return, as when a constraint
on carbon footprint becomes more binding the opti-
mization algorithm will impose a larger tax on stocks
with higher carbon footprints; see Blitz and
Hoogteijling (2022). Therefore, we propose the usage
of security-level carbon footprint in the objective
function as an alternative mechanism for reducing the
portfolio’s overall carbon footprint, while jointly con-
sidering the risk versus expected return versus sus-
tainability tradeoff. Such an approach applies a more
stable tax on expected return and provides greater
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Figure 3. Ex-Ante Mean-Variance-Sustainability Efficient Frontiers
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Notes: This figure plots ex-ante expected return-tracking error-sustainability frontiers for benchmark-relative carbon footprint reduc-
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expected return. These plots were calculated using data as of December 2022.

scope for the optimization algorithm to trade off 2. Constrained simulation with a carbon constraint
expected return and carbon footprint. at y% (denoted Cy)

3. Unconstrained simulation with a carbon metric
To evaluate the practical implications of both in the objective function (denoted p)"!
approaches, we run a series of simulations where we 4. Constrained simulation with a carbon metric in
alter selected portfolio-construction parameters to the objective function and a carbon constraint

0
explore the impact on a portfolio’s carbon footprint at y% (denoted PCy)

via constraint and optimization approaches. We run

the following simulations: Figure 4 depicts the portfolio’s carbon footprint rela-

tive to the benchmark under four different scenarios.
1.  Unconstrained simulation (denoted UC) The unconstrained portfolio has a carbon exposure

8



3D Investing: Jointly Optimizing Return, Risk, and Sustainability

Figure 4. Carbon Footprint Reduction Relative to MSCI World under Different Optimization

Scenarios
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Notes: This figure plots the percentage improvement of the portfolio’s carbon footprint over the MSCI World carbon footprint using
different 2D and 3D portfolio-construction approaches. We report results for a portfolio with a tracking error target of 0.5%.

that deviates around 0% versus the benchmark,
which is expected given the lower tracking error of
the portfolio. The portfolio with a carbon constraint
at 0% (i.e., better than benchmark) produces the
same result as the unconstrained case, except the
carbon footprint can only be lower than the bench-
mark’s footprint. This result demonstrates the time-
varying nature of the carbon footprint of a portfolio.
Such a constraint is not always binding and thus is
relatively “cheap” to implement from an expected
return perspective. This is contrasted directly with
the 60% carbon constraint, where the portfolio’s car-
bon exposure has a static exposure of —60% versus
the benchmark and thus is a case where this con-
straint is always binding. Finally, the carbon metric in
the objective function scenario highlights how the
portfolio can achieve an average carbon footprint
reduction of 60%, but in a time-varying nature. Thus,
the portfolio optimizer has more flexibility to trade
off carbon footprint reduction with risk and return
objectives.

The results in Figure 4 can also be linked to underly-
ing economic phenomena. In recent years, oil and gas
stocks have had strong price momentum while still

being cheap from a valuation perspective and thus
have become attractive from a factor perspective.
Hence, under the 3D investing approach, the opti-
mizer elects to purchase these stocks, which thus
results in an increase in the carbon footprint of the
portfolio. This can then be contrasted with earlier
periods, such as 2012 to 2020, when such stocks
were relatively unattractive from a factor perspective
and thus the objective term approach can produce a
larger-than-average reduction of the portfolio’s car-
bon footprint.

The differences between the constrained optimization
and 3D investing approach are generally driven by the
time-series variation in expected returns. A stock’s
carbon footprint does not significantly change month-
to-month, but expected return forecasts can. Thus, at
each monthly rebalance the 3D investing approach is
trading off expected returns and carbon footprint.

Table 2 presents the detailed performance statistics
over the December 1989 to December 2022 period.
First, we note how in both panel A and panel B,
applying constraints for carbon footprint reduction
reduces gross outperformance and hence IR (as
tracking error is relatively constant). Second, in both
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Table 2. Portfolio Simulation Results with Different Carbon Footprint

Construction Approaches

A. Ex-post tracking error target 0.5%

2D 3D

uc Cco C60 P PC60
Gross outp. (%) 0.70 0.70 0.57 0.61 0.56
Tracking error (%) 0.53 0.53 0.52 0.53 0.52
Information ratio 1.32 1.32 1.10 1.15 1.08
Turnover one-way ann. (%) 30.18 30.19 34.38 32.66 33.98
Carbon footprint reduction (%) —-4.4 -57 -59.1 -59.2 —-60.9
Ann. alpha (%) 0.44 0.45 0.42 0.44 0.40
Alpha t-stat (5.25) (5.28) (5.19) (5.38) (5.03)
Mkt-RF t-stat (-2.14) (-2.14) (—3.26) (—3.36) (-3.28)
Quality t-stat (4.65) (4.65) (3.55) (4.29) (3.51)
Value t-stat (1.49) (1.47) (0.80) (0.95) (0.82)
Momentum t-stat (5.68) (5.68) 4.77) (4.69) (4.71)
Size t-stat (0.04) (0.04) (-0.05) (-0.04) (0.04)
Carbon footprint coeff. -0.20 -0.20 -0.73 -0.66 -0.73
Carbon footprint t-stat (-1.01) (-0.99) (-2.37) (-2.32) (—2.42)
R-squared (%) 41.6 41.6 28.1 31.0 27.1
B. Ex-post tracking error target 1.0%

2D 3D

uc Cco C75 P PC75
Gross outp. (%) 1.30 1.30 1.00 1.06 0.98
Tracking error (%) 0.97 0.97 0.96 0.98 0.96
Information ratio 1.34 1.34 1.04 1.08 1.02
Turnover one-way ann. (%) 47.81 47.85 53.75 51.44 53.67
Carbon footprint reduction (%) -14 —-6.6 -74.1 -73.2 -75.0
Ann. alpha (%) 0.79 0.80 0.61 0.66 0.60
Alpha t-stat (5.08) (5.16) (4.11) (4.32) (4.05)
Mkt-RF t-stat (-1.88) (-1.92) (—2.45) (-2.69) (—2.44)
Quality t-stat (5.55) (5.56) (4.89) (5.45) (4.86)
Value t-stat (1.08) (1.01) (1.02) (0.78) (0.91)
Momentum t-stat (5.55) (5.54) (4.57) (4.47) (4.45)
Size t-stat (2.33) (2.30) (2.55) (2.50) (2.56)
Carbon footprint coeff. -0.25 -0.25 -1.32 -1.24 -1.34
Carbon footprint t-stat (-0.71) (-0.72) (-2.34) (-2.36) (—2.36)
R-squared (%) 40.7 40.7 28.8 31.3 28.1

Notes. This table presents the performance and spanning regression results for fully invested long-only portfolios
optimized using a multifactor expected return target, variance-covariance matrix, and either a constraint on bench-
mark relative carbon footprint (2D) or directly in the objective function (3D). Our sample runs from December
1989 to December 2022 using constituents of the MSCI World universe. Portfolios are rebalanced monthly. Panel
(A) targets a 0.5% tracking error portfolio. Panel (B) targets a 1.0% tracking error portfolio. The spanning regression
regresses the gross outperformance of the optimized portfolio on the outperformance of the top-minus-bottom
portfolios of the different factors (Quality, Value, Momentum, Size, carbon footprint). UC denotes unconstrained.
Cx denotes a constraint at x% lower than the benchmark carbon footprint. P denotes a term in the objective func-
tion. PCy denotes a term in the objective function and a constraint at y% lower than the benchmark carbon foot-
print. R-squared is calculated in a regression excluding the Sl-regressor.

scenarios, the 3D-objective function approach lower one-way turnover, while maintaining a similar
(denoted P) outperforms the 2D-constraint approach  tracking error and carbon footprint reduction. These
(C60%/C75%). The 3D-objective function approach results are reflected in the spanning alpha regressions
delivers an increased gross outperformance and a we run over the underlying factors we use to
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construct the portfolio (QMV) as well as log market
capitalization (size) and a factor constructed from
carbon footprint scores. Across all cases, there are
similar exposures to the targeted factors, highlighting
how the 3D investing incorporates the carbon foot-
print objective while maintaining similar factor expo-
sures in a more efficient manner.

We also explore the combination of the objective
function approach and the constraint approach. We
find that such an approach underperforms the iso-
lated approaches, since it achieves larger carbon
footprint reductions in both cases but often over-
shoots the targeted reduction level. As we are oper-
ating with ambitious carbon reduction targets, any
increase can significantly impact the gross outper-
formance of the portfolio. Nevertheless, such a com-
bination highlights how one can ensure a base level
of reduction, while also doing better than this target
if the risk-return-sustainability tradeoff is
appropriate.

We have denoted the “2D constraint” as that where
the objective is to maximize expected returns and
minimize risk subject to some carbon footprint con-
straint. It is also possible to frame this as maximizing
expected returns and minimizing carbon footprint

3D Investing: Jointly Optimizing Return, Risk, and Sustainability

subject to a maximum tracking error constraint. In
unreported robustness tests, we find that the 3D
investing approach is superior to this “2D TE con-
straint” approach, but this “2D TE constraint”
approach is superior to the “2D constraint” approach.
This suggests that our approach benefits relatively
more from introducing the carbon footprint term into
the objective function and allowing for this tradeoff
to occur.

Improving SDG Score. An alternative applica-
tion of our proposed framework is improving a port-
folio’s exposure to a positive measure of
sustainability. We use the Robeco SDG scores, which
assign a discrete score between —3 (poor) and +3
(good) on how a company is contributing to the UN
SDG goals. Instead of adding a negative coefficient
on a stock’s carbon footprint, we can add a reward/
tax “refund” to the objective function, which encour-
ages the optimization algorithm to hold stocks with
positive SDG scores.

Figure 5 presents the portfolio’s SDG score relative
to the benchmark under five different scenarios, as in
Figure 4. We find qualitatively similar results here as
for the carbon footprint reduction exercise.
Importantly for the objective function scenario, we

Figure 5. SDG Score Improvement over MSCl World under Different Optimization Scenarios
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Notes: This figure plots the percentage improvement of the portfolio’s sustainable development goals (SDG) score over the MSCI
World SDG score using different 2D and 3D portfolio-construction approaches. We report results for a portfolio with a tracking

error target of 1.0%.
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observe a time-variation in the portfolio’s SDG score
around the constrained average of 100% improve-
ment. This result again highlights the dynamic nature
of the 3D-objective function approach to targeting
sustainability objectives, as opposed to the fixed
nature of a constraint.

Table 3 presents the detailed performance statistics
over the December 1989 to December 2022 period.
Following the same notation as in Table 2, we docu-
ment quantitatively similar results as in the carbon
footprint scenario. In panel A, the objective function
scenario (P) outperforms the constraint scenario
(C70%) across most metrics: higher gross outper-
formance (0.49% versus 0.46%), higher gross IR (0.98
versus 0.88), and lower one-way turnover (26.7%
versus 31.4%). In panel B, for the 1.0% tracking error
scenario, we find comparable results, with the objec-
tive function scenario outperforming the constraint
scenario.

Implications and Outlook

The Impact of Evolving Sustainability
Data. Through these two examples, we have shown
how using an Sl metric in the objective function is
generally superior to simply imposing a fixed con-
straint at the portfolio level. The 3D investing frame-
work is generalizable to any sustainability metric that
can be expressed as a discrete or continuous series
(if it is ordinal). The empirical examples correspond to
commonly explored sustainability measures in invest-
ment management, and we observe how there can
be structurally different outcomes dependent on the
measure itself (in conjunction with expected return
and risk models used). To this end, the broader ques-
tion remains: What is the best way to construct port-
folios that satisfy sustainability desires going
forward? Figure 6 presents the MSCI World value-
weighted carbon footprint, ESG, and SDG scores
over time. We observe time-variation in the bench-
mark sustainability scores, but it is not always trend-
ing in one direction. Such changes have significant
implications for how portfolios that target these
measures should be constructed.

In particular, targeting relative improvements of
MSCI ESG scores over the benchmark becomes
increasingly challenging, as the average benchmark
score has increased from 2015 to 2022.22 It is not
strictly the increasing benchmark score that is prob-
lematic, but rather the skewness and concentration
of scores which have an upper bound of 10.0. For
example, suppose that the benchmark score is 8.0
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and a relative improvement of 20% is desired. This
corresponds to a portfolio score of 9.6, which would
require holding a large number of stocks with an
ESG score of 10.0. Thus, the portfolio construction
is going to be heavily driven by ESG scores, while
expected return and risk concerns become second-
ary. By using the objective function approach, the
impacts of such benchmark changes can be less
impactful, and the optimization algorithm will be
able to better trade off expected return, risk, and
sustainability objectives. However, in both scenarios,
the metric of choice has considerable influence on
the optimization algorithm, and thus it is important
to select measures that have desirable properties
when targeting them in a portfolio-optimization
algorithm.

When to Use One Approach Versus the
Other. Portfolio constraints are the most common
way to ensure compliance with sustainability objec-
tives. Another popular way to ensure portfolio sus-
tainability compliance is via universe exclusion, for
example, excluding names that are considered “sin
stocks.” In this article, 3D investing emerges as an
effective way to improve portfolio sustainability that
offers Pareto optimality and more flexibility. This
result, however, does not mean that the traditional
constraint- and exclusion-based approaches are with-
out merit and should be discarded.

A constraint-based approach to portfolio sustainabil-
ity is suitable when one wants portfolio-level sustain-
ability goals to be achieved at all times. Similarly, an
exclusion-based approach ensures that individual
stock-level sustainability goals are achieved at all
times.®® This is because constraints and exclusions
are hard criteria and, thus, the portfolio optimizer
must satisfy these objectives for all proposed portfo-
lios. On the other hand, an optimization-based
approach as discussed in this paper represents a soft
criterion. It is more flexible, as it enables the opti-
mizer to trade off among sustainability, risk, and
expected return. This tradeoff ensures a superior sus-
tainability profile versus those portfolios without sus-
tainability in the objective on average, but it does not
guarantee a specific sustainability profile at any given
point in time.

These hard and soft approaches both have their use
cases in portfolio construction. If one wants to
always ensure a certain level of guaranteed sustain-
ability profile or ensure that certain names will not
be held in the portfolio, constraints and exclusions
should be used, respectively. On the other hand, if
the portfolio manager wants to achieve a better
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Table 3. Portfolio Simulation Results with Different SDG Construction

Approaches

A. Ex-post tracking error target 0.5%

2D 3D

uc Cco C70 P PC70
Gross outp. (%) 0.70 0.70 0.46 0.49 0.42
Tracking error (%) 0.53 0.53 0.52 0.50 0.51
Information ratio 1.32 1.32 0.88 0.98 0.82
Turnover one-way ann. (%) 30.2 30.3 314 26.7 30.1
SDG improvement (%) 0.2 3.1 69.6 70.1 78.6
Ann. alpha (%) 0.44 0.44 0.30 0.31 0.28
Alpha t-stat (5.19) (5.18) (3.38) (4.14) (3.15)
Mkt-RF t-stat (-=2.23) (-2.21) (—=2.60) (-2.91) (—2.64)
Quality t-stat (4.67) (4.65) (5.72) (5.35) (5.46)
Value t-stat (1.48) (1.49) (1.10) (0.84) (1.04)
Momentum t-stat (5.56) (5.59) (1.22) (3.24) (0.99)
Size t-stat (-0.01) (0.03) (0.88) (-0.24) (0.82)
SDG coeff. 0.41 0.43 1.39 1.58 1.56
SDG t-stat (1.32) (1.40) (4.42) (5.61) (5.10)
R-squared (%) 41.6 415 17.0 251 13.9
B. Ex-post tracking error target 1.0%

2D 3D

uc Cco C100 P PC100
Gross outp. (%) 1.30 1.29 0.94 0.98 0.87
Tracking error (%) 0.97 0.97 1.02 0.96 1.01
Information ratio 1.34 1.33 0.92 1.02 0.86
Turnover one-way ann. (%) 47.8 48.0 51.3 44.3 49.5
SDG improvement (%) -0.2 34 99.5 101.4 111.9
Ann. alpha (%) 0.78 0.77 0.59 0.59 0.56
Alpha t-stat (5.03) (4.95) (3.62) (4.12) (3.45)
Mkt-RF t-stat (-2.02) (—1.98) (—2.66) (-3.22) (-2.78)
Quality t-stat (5.62) (5.60) (5.83) (5.85) (5.51)
Value t-stat (1.11) (1.10) (1.01) (0.54) (1.03)
Momentum t-stat (5.47) (5.50) (1.55) (3.61) (1.36)
Size t-stat (2.38) (2.41) (2.87) (1.89) (2.72)
SDG coeff. 0.69 0.73 2.61 2.87 2.89
SDG t-stat (1.28) (1.35) (3.74) (5.09) (4.25)
R-squared (%) 40.7 40.9 18.1 27.5 15.8

Notes. This table presents the performance and spanning regression results for fully invested long-only portfo-
lios optimized using a multifactor expected return target, variance-covariance matrix, and either a constraint on
benchmark relative SDG (2D) or directly in the objective function (3D). Our sample runs from December 1989
to December 2022 using constituents of the MSCI World universe. Portfolios are rebalanced monthly. Panel A
targets a 0.5% tracking error portfolio. Panel B targets a 1.0% tracking error portfolio. The spanning regression
regresses the gross outperformance of the optimized portfolio on the outperformance of the top-minus-bottom
portfolios of the different factors (quality, value, momentum, size, SDG). Cx denotes a constraint at x% higher
than the benchmark SDG score. P denotes a term in the objective function. PCy denotes a term in the objective
function and a constraint at y% higher than the benchmark SDG score. R-squared is calculated in a regression
excluding the Sl regressor.

SDG = sustainable development goals; S| = sustainable investing; UC = unconstrained.

sustainability profile on average but, when conditions  example, when oil and gas companies are so cheap
are right, may go for higher expected returns instead  that their expected future returns are very high, the
of a better sustainability profile, then the multi-objec- optimization-based approach allows for temporary
tive optimization approach is appropriate. For sacrifice of sustainability for higher expected return.
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Figure 6. MSCI| World Value-Weighted Carbon Footprint, ESG, and SDG Scores over Time
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and corporate governance (ESG) score, for the MSCI World benchmark. The sample for carbon footprint and SDG runs from
December 1989 to December 2022. The sample for ESG runs from December 2009 to December 2022. Each series is reported as

the ratio of the current value to the first value in the time series.

Finally, with new regulatory developments, such as
the European Green Deal, the necessity to integrate
alternative objectives into the investment paradigm
will continue to grow. Our methodology provides a
framework that is compatible with these regulatory
environments and allows investors to make more
transparent decisions around the integration of sus-
tainability objectives alongside explicit risk and return
considerations. Ultimately, at the heart of our frame-
work is the stock-selection model wherein we select
stocks with the highest expected returns. This con-
tinues to remain front and center in the investment
paradigm, and our framework allows for a more flexi-
ble approach for incorporating alternative objectives,
such as sustainability.

Conclusions

Investing has historically been a multidimensional
endeavor, but portfolio-construction approaches have
most often been considered 2D. Sustainable inves-
ting is the latest example of multi-objective investing
in an extensive line of examples. We demonstrate a
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3D investing framework that results in the “best pos-
sible” solution when jointly considering more than
two portfolio objectives. Historical simulations high-
light the superiority of this approach versus the tradi-
tional constraint-based approach for sustainable
investing (in the context of carbon footprint reduc-
tion and attaining higher SDG scores). 3D investing
achieves, on average, higher sustainability character-
istics and expected returns when compared with a
pure constraint-based approach.

Notably, constraints are not without their use in sus-
tainable investing. In practice, a mixed approach, with
a nonbinding sustainability constraint in conjunction
with incorporating the sustainability criteria into the
objective function, may be preferred. Such an
approach guarantees a basic level of sustainability
targeting while allowing the optimization algorithm to
make opportunistic tradeoffs among return, risk, and
sustainability. If aggressive sustainability objectives
are desired, the 3D investing approach where sus-
tainability is explicitly targeted alongside alpha and
risk is optimal.
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Notes

1. The reduction of the carbon footprint of a portfolio (as
given by CO, emissions scaled by some measure of a
company'’s size) is one of the most common sustainability
objectives. For examples, see Andersson, Bolton, and
Samama (2016), Hao, Soe, and Tang (2018), Gorgen,
Jacob, and Nerlinger (2020), Roncalli et al. (2020), Bender
et al. (2020), Benz et al. (2020), Bolton and Kacperczyk
(2021), Bolton, Kacperczyk, and Samama (2022), and Kolle
et al. (2022).

2. This is the transaction cost at which the outperformance
of the portfolio would be zero.

3. For practical considerations on the sustainability metric
ug;, see Chen and Mussalli (2020).

4. Prior to 2001, we use constituents of the FTSE
Development Markets index as a proxy for MSCI World
constituents.

5. In unreported results, we find qualitatively similar results
when using raw scope 1 and scope 2 emissions and
carbon intensity (scaled by revenue instead of EVIC) and
when incorporating scope 3 emissions into carbon
footprint.

6. We additionally use the data-simulation approach of Blitz
and Hoogteijling (2022) to produce a longer history of
carbon footprint data and SDG data. Note that any
potential forward information leakage is of little concern
as we are comparing two portfolio-construction
approaches on the same data. We aim to illustrate the
broad application of our methodology on a representative
set of sustainability data.

7. Examples can be found at the Robeco Sl open-access
page: https://www.robeco.com/en-int/sustainable-
investing/how-do-companies-and-countries-score-on-
sustainability.

8. We use the same benchmark, MSCI World, when
constructing portfolios and evaluating financial and
sustainability objectives.

9. We define the “risk-return efficient frontier” to be the
traditional efficient frontier for a constant level of
portfolio sustainability and the “maximum risk-return
efficient frontier” to be the risk-return efficient frontier
when sustainability considerations are dropped. That is,
the maximum risk-return efficient frontier is the efficient
frontier in the traditional sense.

10. Similarly, we define the “risk-sustainability efficient
frontier” to be the risk versus sustainability efficient
frontier for a constant level of expected return and the
“maximum risk-sustainability efficient frontier” to be the
risk-sustainability efficient frontier when expected return
considerations are dropped.

11. For the carbon footprint scenario, we use coefficients of
(=0.016 and —0.020) and for the SDG scenario we use
coefficients of (2.0 and 1.5) for the 0.5%/1.0% tracking
error targets, respectively.

12. For more discussions on the skewed distribution of MSCI
ESG scores, see Chen, von Behren, and Mussalli (2021).

13. This approach is not extensively discussed in this paper,
as it is common and straightforward.
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